Radiolysis-Driven Evolution of an Ancient Subsurface Habitable Brine in the Witwatersrand Basin, South Africa

DEVAN M NISSON¹, THOMAS L KIEFT², HENRIK DRAKE³, OLIVER WARR^{4,5}, BARBARA SHERWOOD LOLLAR^{4,6}, HIROSHI OGASAWARA⁷, SCOTT M PERL⁸, BARRY M FRIEFELD⁹, JULIO CASTILLO¹⁰, MARTIN WHITEHOUSE¹¹, ELLEN KOOIJMAN¹² AND TULLIS C ONSTOTT¹

¹Princeton University

²New Mexico Institute of Mining and Technology
³Linnaeus University
⁴University of Toronto
⁵University of Ottawa
⁶Université Paris Cité
⁷Ritsumeikan University
⁸Jet Propulsion Laboratory
⁹Lawrence Berkeley National Laboratory
¹⁰University of the Free State
¹¹Department of Geosciences, Swedish Museum of Natural History
¹²Swedish Museum of Natural History
Presenting Author: dnisson@princeton.edu

Crustal fluids can evolve elevated salinities over Ma-Ga timescales via extended water-rock interactions, with hydrogeochemical history reflected in their geochemical and isotopic compositions [1][2]. In radionuclide-enriched subsurface fractures, the decay of ²³⁸U, ²³²Th and ⁴⁰K triggers radiolysis of water, and drives increasing salinity and the formation of redox and organic species fueling inhabiting biota [3]. We present a case of alpha-particle radiolysis driven brine formation and support for microbial metabolism in a deep (3.2 km), ancient (1.2 Ga) and thermal (45-54 °C) subsurface brine in Moab Khotsong gold and uranium mine of the Witwatersrand Basin, South Africa [4][5]. This brine (215-246 g/L TDS) was found to have the highest radiolytically produced excess of ⁸⁶Kr and a ¹³⁶Xe excess consistent with uranium fission [5]. Estimated concentrations of ²³⁸U for this system (1-100 ppm) account for local annual dosages of 0.02-0.3 Gy and minimum estimates of annual redox species production for H₂ (7 nM), NO₂⁻ (2 nM), NO₃⁻ (0.1nM), SO_4^{2-} (0.2 nM), and O_2 (3 nM) [4]. Introduction of redox species via recent mixing with meteoric waters or air exchange were not supported, based on Δ^{14} C dating and non-meteoric $^{18}O/^2$ H isotopic signatures for this system, suggesting their autochthonous origin. Additional analyses of stable isotopes $\delta^{18}O_{calcite},\,\delta^{13}C_{calcite},\,\Delta^{33}S_{pyrite,}\,\delta^{34}S_{pyrite}$ and $^{87}Sr/^{86}Sr$ confirm the interaction of multiple past fluid incursions with surrounding strata [4]. The brine currently contains a low biomass bacterial community $(10^2-10^4 \text{ cells/mL})$ with favored metabolic strategies including aerobic heterotrophic, fermentative, denitrifying and

thiosulfate oxidizing members. The Moab brine system represents a high salinity and ancient end member distinct from less saline paleo-meteoric fluids in the Basin [6]. These findings provide a new opportunity to examine radiolytic-driven brine formation in an ancient subsurface brine system with abiotic support for a low biomass biosphere. [1] Drake et al. (2021) *Commun. Earth Environ.* 2, 102 [2] Warr et al. (2021) *Commun. Earth Environ.* 2, 102 [2] Warr et al. (2021) *Chem. Geol.* 561, 120027 [3] Sherwood Lollar et al. (2021) *Geochim. Cosmochim. Acta* 294, 295-314. [4] Nisson et al. (2023) *Geochim. Cosmochim. Acta* 340, 65-84. [5] Warr et al. (2022) *Nat. Comms.* 13, 3768-3768 [6] Onstott et al. (2006) *Geomicrobiol. J.* 23, 369-414.