Water in omphacite and garnet from unmetasomatised xenolithic eclogite: T-X-fO₂ controls, and implications for conductivity and the deep H₂O cycle

SONJA AULBACH¹, ROLAND STALDER², MALCOLM MASSUYEAU³, RICHARD A STERN⁴, DMITRI A IONOV⁵, LARRY M HEAMAN⁴ AND ANDREY V KORSAKOV⁶

¹Goethe-Universität Frankfurt

²University of Innsbruck

³Institut für Mineralogie, Westfälische Wilhelms-Universität Münster

⁴University of Alberta

⁵Geosciences Montpellier, University of Montpellier ⁶V.S. Sobolev Institute of Geology and Mineralogy of the

Siberian Branch of the RAS

Presenting Author: s.aulbach@em.uni-frankfurt.de

Eclogite xenoliths - widely interpreted as having oceanic crustal protoliths - contain some 50 wt.% omphacitic clinopyroxene, which can accommodate 100s to 1000s wt.ppm H_2O . This lithology has thus been interpreted as an important carrier of water into deep Earth, with consequences for mantle rheology and melting behaviour. We determined, by Fourier Transform Infrared Spectroscopy, structural OH contents in clinopyroxene (oriented crystals in polarised mode) and garnet from 15 relatively pristine (unmetasomatised), well-characterised Archaean and Palaeoproterozoic eclogite xenoliths from the Udachnaya kimberlite (Siberian craton) and the Diavik kimberlite (Slave craton), respectively.

Calculated total $c(H_2O)$ range from only 50 to 300 wt.ppm for reconstructed bulk eclogites, suggesting limited transport of water into the deep mantle in ancient subduction zones. Garnet delta¹⁸O ranges from +5.0‰ (mantle-like) to +7.3‰ (similar to low-temperature seawater-altered oceanic crust). Temperatureand H₂O-dependent electrical conductivity ranges from 10^{-4.0} to 10^{-1.0} S/m using the calibration for eclogite minerals of Liu et al. (2019), and is mostly higher than that derived either from magnetotelluric studies or calculated for peridotite in cratons (Garber et al. 2018), thereby placing upper limits on the volume of eclogite present in the cratonic lithosphere. Both H₂O content and electrical conductivity in bulk eclogites increase with depth.

The orientation of the OH dipole in clinopyroxene, captured as the ratio of gamma- over alpha-polarised component (though not $c(H_2O)$) is positively correlated with Fe³⁺/Fe^{total} and temperature, suggesting OH redistribution among crystal defects that may be a useful tool to estimate iron valence state if the temperature effect is accounted for. Clinopyroxene-garnet H₂O distribution coefficients range from 2.2 to 75 and decrease with increasing temperature and garnet grossular component, similar to other incompatible components in eclogite minerals. The two samples with the lowest total HREE abundances and garnet delta¹⁸O, indicative of a deep oceanic cumulate protolith unaffected by seawater alteration, have the highest bulk $c(H_2O)$. This signature may indicate interaction of subducted oceanic crust with serpentinite-derived fluids having mantle-like delta¹⁸O.

Liu et al. (2019) Contributions to Mineralogy and Petrology 174

Garber et al. (2018) G-Cubed 19