Methane from the past: Insights from clumped isotope measurements

MALAVIKA SIVAN¹, JIAYANG SUN², THOMAS RÖCKMANN¹, MOJHGAN A. HAGHNEGAHDAR², JAMES FARQUHAR², CARINA VAN DER VEEN¹, CAROLINE P. SLOMP³ AND MARIA ELENA POPA¹

¹Institute for Marine and Atmospheric Research Utrecht, Utrecht University ²University of Maryland ³Radboud University

Presenting Author: m.sivan@uu.nl

Atmospheric methane (CH₄) is the second most important anthropogenic greenhouse gas after CO₂. Global scale measurements of CH₄ mole fractions show an increasing trend since the 1800s as a consequence of anthropogenic emissions, overlayed by significant multi-annual variability. Understanding the evolution of CH₄ in the past is important to predict the change in future. Various studies have attempted to attribute the temporal changes in atmospheric CH₄ to changes in the contribution of different CH₄ sources, or variations in the atmospheric OH concentration and CH₄ sink reactions.

Previously, CH_4 mole fractions and bulk isotopic composition ($\delta^{13}CH_4$ and $\delta^{12}CH_3D$) from air trapped in firn or ice [1] were investigated to understand the possible causes of past CH_4 variability. However, these existing measurements and models couldn't converge on the same conclusion.

Measurements of the clumped isotopic composition ($\Delta^{13}CH_3D$) and $\Delta^{12}CH_2D_2$) and incorporating them in the global CH_4 budget model can serve as an additional tool to constrain the sources or sinks of CH_4 [2]. Recent developments towards lowconcentration samples facilitate such measurements of CH_4 extracted from atmospheric air.

In this study, we present the first measurements of CH₄ clumped isotopes of air from the past. We analyzed 14 firn air samples collected at EGRIP (Greenland) in high-pressure cylinders, from different layers of firn down to a depth of 70 metres, dating back to the 1980s. We observe a change of 10 ± 2 ‰ for Δ^{12} CH₂D₂ over the last 30 years (from 1990 to 2018) while Δ^{13} CH₃D remains constant within the measurement uncertainty. We use a box model to test possible sources and sink evolution scenarios for compatibility with our experimental data.

References:

[1] Sapart, C. J. et al., 2013: https://doi.org/10.5194/acp-13-6993-2013

[2]Chung, E & Arnold, T 2021: https://doi.org/10.1029/2020GB006883