Using Dual Clumped Isotope Proxies (Δ_{48} and Δ_{47} values) to identify microbial associated dolomite

DR. PETER K SWART, PHD¹, CHAOJIN LU², SEAN MURRAY³, ALI POURMAND⁴ AND EVAN MOORE⁵

¹University of Miami - Rosenstiel School of Marine and Atmospheric Science

²Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami ³Macquarie University

 ⁴Rosenstiel School for Marine and Atmospheric Science (RSMAS), University of Miami
⁵RSMAS

Presenting Author: pswart@rsmas.miami.edu

Traditionally the influence of microbial process on carbonate precipitation has been inferred by measuring the δ^{13} C values of the precipitates. However, in most carbonate diagenetic environments, where the system in rock buffered, this is either not possible or the changes in δ^{13} C values are barely evident. Here we present a new approach using the Δ_{48} values that show extreme disequilibrium in dolomites that have unequivocally formed under conditions of bacterial sulfate reduction. This contrast to the Δ_{48} values of dolomites forming under open marine conditions. The open system dolomite, previously interpreted has being formed in an environment of actively flowing seawater, exhibit conventional δ^{34} S, δ^{11} B, δ^{18} O, δ^{-34} S, δ^{13} C values and Sr concentrations, shows Δ_{47} and Δ_{48} values closed to equilibrium as defined by precipitation experiments[1]. In contrast, the bulk sediments containing up to 50% dolomite that has been interpreted to have formed under closed system conditions have δ^{34} S values as high as +30‰, low δ^{11} B values +4 to +10 ‰), and elevated Sr concentrations. The chemically isolated dolomites from these bulk samples, possess Δ_{47} values close to equilibrium, but Δ_{48} values that are significantly more negative than expected. The Δ_{47} and Δ_{48} values of these dolomites are shown in figure 1 (purple = closed system, blue= open system) relative to calcite formed at known temperatures and the theoretical equilibrium line; data from Swart et al. [1]. Such negative Δ_{48} values might be predicted from pore waters with pH values close to 8.1 and slightly elevated concentrations of dissolved inorganic carbon [2]. The discovery of this anomaly using the dual clumped isotopic proxy offers important implications in the understanding of the formation of ancient dolomites.

- Swart, P.K., et al., A calibration equation between Δ48 values of carbonate and temperature. Rapid Communications in Mass Spectrometry, 2021. 35(17): p. e9147.
- Guo, W.F., Kinetic clumped isotope fractionation in the DIC-H2O-CO2 system: Patterns, controls, and implications. Geochimica et Cosmochimica Acta, 2020.

