Carbon Fixation using Seawater for Sustainable Large-Scale Carbon Capture and Storage—Using stable isotopes for quantification

ELIZABETH PHILLIPS^{1,2}, MARTIN VOIGT³, HAROLD BRADBURY^{4,5}, WILLIAM J. KNAPP⁶, ALEXANDRA (SASHA) V. TURCHYN⁴, EDWARD T. TIPPER⁴, SANDRA ÓSK SNÆBJÖRNSDÓTTIR³, BERGUR SIGFÚSSON³, DEIRDRE E. CLARK⁷, ERIC H. OELKERS² AND SIGURDUR R GISLASON⁸

¹University of Oxford

²University of Iceland

³Carbfix

⁴University of Cambridge

⁵University of British Columbia

⁶University of Cambridge, Department of Earth Sciences

⁷Iceland GeoSurvey

⁸Institute of Earth Sciences, University of Iceland

Presenting Author: ejphillips@hi.is

Subsurface carbon mineralization is considered the most stable method of carbon capture and storage; a process where dissolved CO_2 is injected into the subsurface, reacting with mafic or ultramafic minerals (e.g., basalt) to release cations (e.g., Ca^{2+} , Mg^{2+} , Fe^{2+}), ultimately precipitating into carbonate minerals. Existing methods of mineral carbonation are freshwater intensive, thus sustainably implementing mineral carbonation carbon storage on the Gigatonne scale will likely involve seawater for CO_2 dissolution depending on the location¹. While efficient carbon mineralization has been demonstrated in seawater experimentally in conditions relevant to mineral carbonation², no field-scale seawater investigations of mineral carbonation have been undertaken to date.

Stable isotopes of calcium (d⁴⁴Ca) and magnesium (d²⁶Mg) can be applied to compare the efficiency of mineral carbonation in seawater to that in freshwater, however the most reliable estimates will require accurate isotopic fractionation factors (α) for carbonate mineral precipitation at relevant conditions and accurate methods for disentangling the different processes (e.g., basalt dissolution, anhydrite precipitation). Here, we measure d⁴⁴Ca and d²⁶Mg during mineral carbonation from seawater at varying temperatures and CO₂ partial pressures to understand how these variables impact the calculated α for carbonate precipitation. We use radiogenic strontium (⁸⁷Sr/⁸⁶Sr) as a proxy for basalt dissolution. Estimates of carbon mineralization using d⁴⁴Ca and d²⁶Mg are compared to alternative methods (acidification and non-dispersive infrared (IR) CO₂ gas analyzer, furnace and solid state IR, mass balance calculations). Findings of this work will be used in conjunction with post-injection measurements of d⁴⁴Ca, d²⁶Mg, and ⁸⁷Sr/⁸⁶Sr to evaluate the efficiency of mineral carbonation from seawater. This study highlights key variables to consider when using d⁴⁴Ca and d²⁶Mg

to investigate subsurface processes and lays a foundation for the first field-scale investigation of carbon mineralization in seawater.

¹ Marieni, Chiara, et al. "Mineralization potential of waterdissolved CO₂ and H₂S injected into basalts as function of temperature: Freshwater versus Seawater." *International Journal of Greenhouse Gas Control* 109 (2021): 103357.

² Voigt, Martin, et al. "An experimental study of basalt– seawater– CO_2 interaction at 130° C." *Geochimica et Cosmochimica Acta* 308 (2021): 21-41.