Empirically constraining the role of O₂ in the end-Proterozoic diversification of eukaryotes

DANIEL BRADY MILLS¹, RACHEL L. SIMISTER², TAYLOR R. SEHEIN³, STEVEN J. HALLAM⁴, ERIK A. SPERLING⁵ AND SEAN A. CROWE²

¹Ludwig Maximilian University of Munich
²University of British Columbia
³Smith College
⁴The University of British Columbia
⁵Stanford University

Presenting Author: daniel.brady.mills@gmail.com

Microbial eukaryote body fossils, organic biomarker data, and molecular clock analyses all suggest an increase in crowneukaryote diversity ca. 800 million years ago (Ma), towards the end of the Proterozoic Eon. Certain geochemical redox proxies have also been used to argue for increasing atmospheric oxygen (pO_2) levels at this time, suggesting a positive correlation between O₂ availability and eukaryote diversity. To test this relationship, we collected time-resolved geochemical parameter and sequence information from a model marine oxygen minimum zone spanning a range of dissolved O2 levels and redox states. Our observations constrain the control of dissolved O₂ concentration on microbial eukaryote diversity, specifically taxonomic richness (that is, alpha diversity), phylogenetic diversity, and evenness. Overall, our results suggest that pO_2 would have only significantly restricted microbial eukaryote diversity in the Proterozoic if it consistently remained below 1% of present atmospheric levels (PAL). Indeed, if pO₂ regularly exceeded 1% PAL before 800 Ma, then the mid-Proterozoic redox landscape already supported the maximum levels of microbial eukaryote diversity observed today and the end-Proterozoic diversification of eukaryotes was necessarily driven by other environmental or internal factors.