Meridional migration of the Antarctic Circumpolar Current over the last glacial cycle

XUYUAN ELLEN AI^{1,2}, LENA M THÖLE^{3,4}, ALEXANDRA AUDERSET¹, MAREIKE SCHMITT¹, SIMONE MORETTI¹, ANJA S STUDER⁵, ELISABETH MICHEL⁶, MARTIN WEGMANN³, ALAIN MAZAUD⁷, PETER K BIJL⁴, DANIEL M. SIGMAN², ALFREDO MARTINEZ-GARCIA¹ AND SAMUEL L JACCARD³

¹Max Planck Institute for Chemistry
²Princeton University
³University of Bern
⁴Utrecht University
⁵University of Basel
⁶Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL)
⁷Laboratoire des Sciences du Climat et de l'Environnement Presenting Author: Xuyuan.ai@mpic.de

The Southern Westerly Winds (SWW) drive upwelling south of the Antarctic Polar Front that vents CO₂ to the atmosphere. During the ice ages, a northward (equatorward) shift of the Antarctic Circumpolar Current (ACC) fronts may have reduced this CO₂ venting, helping to explain the lower atmospheric CO₂ concentration of those times. However, direct evidence of frontal migration is scarce. In this study, we report biomarker-based surface layer temperature reconstructions from marine sediment cores at different latitudes in the Southern Indian Ocean across the last glacial cycle. Using a quantitative framework for the effect of the ACC fronts on meridional SST gradient, we show that the ACC was $\sim 2^{\circ}$ equatorward relative to its modern position during the ice ages and ~4-6° poleward than its modern position at the end of the last two glacial terminations, consistent with ACC migration playing a role in glacial-interglacial CO₂ change. Further comparison of the temporal evolution of ACC latitude with other observations posits a role for Earth's axial tilt in the strength and latitude range of SWW-driven upwelling. This has implications for past and future atmospheric CO2 concentrations and may explain previously noted deviations in atmospheric CO2 from a simple correlation with Antarctic climate.