Winter Soil Processes in Cold Region Agroecosystems: Impacts on Nitrogen Cycling

FEREIDOUN REZANEZHAD¹, DANIELLE GREEN¹, KONRAD JENS KROGSTAD¹, GRANT BENJAMIN JENSEN¹, MEHDI GHARASOO², SEAN JORDAN³, STEPHANIE SLOWINSKI¹, LAURA A HUG¹, CLAUDIA WAGNER-RIDDLE³, HUGH HENRY⁴, DAVID RUDOLPH¹ AND PHILIPPE VAN CAPPELLEN¹

¹University of Waterloo
²German Federal Institute of Hydrology
³University of Guelph
⁴University of Western Ontario
Presenting Author: frezanezhad@uwaterloo.ca

Winter soil processes in cold region agroecosystems are critical in governing water and soil quality. Biogeochemical processes governing nitrogen (N) transformations in agricultural soils during the winter season are largely unknown, however. Understanding these processes and the variables modulating them (e.g., temperature, soil moisture, snow cover, soil type) are critical to predicting N availability to crops, greenhouse gas emissions, and deterioration of downstream water quality. Here, we present two studies on winter warming and freeze-thaw cycles on N loss pathways in agricultural soils. In the first project, we assessed the effects of winter pulsed warming, soil texture and snow cover on N cycling in a field-scale lysimeter experiment. The results showed that the removal of the insulating snow cover resulted in more intense soil freeze-thaw events, causing increased dissolved N loss from the lysimeter systems via nitrous oxide (N2O) fluxes (from the silt loam soil) and nitrate (NO_3) leaching (from the loamy sand soil). In the silt loam lysimeter, we attributed the freeze-thaw enhanced N₂O fluxes to de novo production rather than gas build-up and physical release. In the loamy sand lysimeter, we attributed the increased NO₃⁻ leaching to the lower water retention capacity of this soil type. In the second project, we examined the effects of freeze-thaw cycles on N leaching from fertilized and unfertilized soil columns. The experiment and model results indicated that the high NO₃⁻ concentrations produced during the thawing events in the fertilized soil were due to nitrification of fertilizer N in the upper oxidized portion of the soil. The low concentrations of NO₃⁻ and ammonium in the non-fertilized soils leachates implied that the freeze-thaw cycles had little impact on the mineralization of soil organic N. Overall, our results highlight the important role of winter soil processes in modulating soil biogeochemical N cycling, with consequences for soil health, N₂O emissions, and nearby water quality. Consideration of these impacts is important when designing agricultural best management practices adapted to cold regions under climate change.