Triple oxygen isotope kinetics of sulfate from pyrite oxidation experiments

BRYAN A KILLINGSWORTH¹, JUSTIN A HAYLES², TAO SUN³, DARRYL A HOPPE¹ AND ROBERT R SEAL II¹

 ¹U.S. Geological Survey, Geology, Energy & Minerals (GEM) Science Center
²Jacobs-JETS2 NASA Johnson Space Center
³Rice University
Presenting Author: bkillingsworth@usgs.gov

Dissolved and mineral sulfates from low temperature terrestrial and marine environments are out of equilibrium with their oxygen sources - most commonly water or molecular oxygen. Instead, oxygen isotope compositions of sulfate imply they are dominated by kinetic signatures of oxidative and reductive processes [1] that are poorly constrained compared to equilibrium effects [2]. Consequently, the specific roles of different pathways of pyrite oxidation for determining the oxygen isotope compositions of sulfate in freshwater and marine settings are also under-constrained. This scenario hinders more detailed understandings of oxygen sources and the sulfur cycle within rivers, lakes, aquifers, and mining-affected environments. To address these knowledge gaps, we conducted pyrite oxidation experiments at time scales spanning minutes to years, analyzed the triple oxygen isotope compositions (Δ^{17} O and δ^{18} O) of sulfate products, and interpreted results using molecular modeling. Our preliminary results show isotopic relationships of 1) pyritederived sulfate Δ^{17} O reaching above the meteoric water line as the sulfate δ^{18} O values become lower than water, and 2) sulfate Δ^{17} O and δ^{18} O values extending between water and O₂ values. From these results we interpret sulfate-water oxygen isotope fractionation as a kinetic isotope effect and the array of sulfate isotope data between water and O₂ as mixing between two end member pools of sulfate containing most of their oxygen atoms from water or from O_2 .

[1] Killingsworth, Cartigny, Hayles, Thomazo, Sansjofre, Pasquier, Lalonde & Philippot (2022), *Chemical Geology* 588, 120678.

[2] Hayles & Killingsworth (2022), *Chemical Geology* 589, 120646.