Denudation and weathering rates of carbonate lithologies from meteoric ¹⁰Be/⁹Be ratios

HELLA WITTMANN¹, JULIEN BOUCHEZ², DAMIEN CALMELS³, JÉRÔME GAILLARDET⁴, DANIEL A. FRICK⁵, NICOLE STRONCIK¹, ASTER TEAM*⁶ AND FRIEDHELM VON BLANCKENBURG^{1,7}

¹GFZ German Research Centre for Geosciences ²Université Paris Cité IPGP (UMR 7154)

³GEOPS, Université Paris Saclay (UMR 8148)

⁴Institut de Physique du Globe de Paris

⁵Deutsches GeoForschungsZentrum GFZ

⁶Aix-Marseille Univ., CNRS-IRD-INRAE-Collège de France, UM 34 CEREGE, Technopôle de l'Environnement Arbois-Méditerranée

⁷Freie Universität Berlin

Presenting Author: wittmann@gfz-potsdam.de

About 60% of the solute ocean input originates from weathering of carbonate rocks. The associated carbon sources and sinks are balanced over geologic time scales. However, the high solubility of carbonate rocks means that their weathering may compensate anthropogenic CO_2 emissions over centennial to millennial timescales. Knowledge of the rates of carbonate weathering and erosion over such timescales is hence of prime importance for constraining the feedbacks within this part of the carbon cycle.

To date carbonate rock denudation was quantified by 1) erosion using cosmogenic ³⁶Cl in pebbles; and 2) weathering using dissolved loads (e.g.^{[1],[2]}). However, these rates are difficult to place into a joint context as they integrate over two distinct timescales. Hence, to constrain denudation rates in carbonate catchments, we developed a method that records weathering and erosion rates simultaneously: the cosmogenic meteoric ¹⁰Be over ⁹Be ratio (¹⁰Be/⁹Be). We adapted a framework^[3] combining an atmospheric flux tracer, meteoric 10 Be (T_{1/2}=1.4 My), with stable 9 Be, a trace metal released from rocks during weathering, to the limestone-dominated French Jura Mountains. We analyzed river water, soil, sediment, and bedrock for ¹⁰Be/⁹Be, major and trace elements, and Sr and C isotopes, to quantify i) the contribution of Be released from carbonate vs. silicate minerals and ii) primary vs. secondary carbonate phases in soils and sediments, iii) solid-solute load Be partitioning, and iv) deep (karstic system) vs. surficial (soils) weathering and erosion. Our results indicate average denudation rates (D, the sum of weathering W and erosion) are 300 t/km²/yr. Denudation is dominated by the weathering flux (W/D ratios of 0.7-0.97). Importantly, we find a consistently high contribution from deep (below soil) weathering, accounting for 30-50% of total weathering at the catchment scale. Such a deep contribution may not have been accessible in previous cosmogenic nuclide studies that used solid material sampled at the surface. Overall, our rates agree with decadal-scale denudation rates from combined

suspended and dissolved fluxes within <2x, highlighting the potential of this new method for future Earth's surface studies.

^[1]Ott et al., JGR-ES, 2019.

^[2]Ben-Asher et al., GSA-Bull., 2021.

^[3]von Blanckenburg, F, Bouchez, J. and Wittmann, H., EPSL, 2012.