Insights into Southern Ocean dynamics during the mid-Pleistocene climate transition from benthic foraminiferal stable carbon isotopes

JULIA GOTTSCHALK¹, ADAM P HASENFRATZ^{2,3}, JENNIFER L MIDDLETON⁴, JESSE R FARMER⁵, ELISABETH MICHEL⁶, JEAN HANLEY⁷, CAROL KNUDSON⁷, EXPEDITION 383 SCIENCE PARTY⁸, SAMUEL L JACCARD^{3,9}, FRANK LAMY¹⁰ AND GISELA WINCKLER⁴

¹Institute of Geosciences, Kiel University
²ETH Zurich
³University of Bern
⁴Columbia University
⁵University of Massachusetts Boston
⁶Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL)
⁷Lamont-Doherty Earth Observatory, Columbia University
⁸International Ocean Drilling Program, Texas A&M University
⁹University of Lausanne
¹⁰Alfred Wegener Institute
Presenting Author: julia.gottschalk@ifg.uni-kiel.de

The mid-Pleistocene transition (MPT) is arguably the most enigmatic long-term climate shift of the Quaternary, and is characterized by increasingly severe glacial conditions about 1.2 to 0.6 million years ago. Although these processes were presumably linked by a continuous lowering of glacial atmospheric CO₂ levels, the underlying processes are incompletely understood. Here, we investigate high-resolution epibenthic foraminiferal stable carbon isotope records from the Southern Ocean to assess the contribution of circulation and carbon cycle changes to climate dynamics of the MPT. Specifically, we compare two new benthic foraminiferal (Cibicidoides/Cibicides sp.) d¹³C records from central South Pacific IODP Site U1541 (54.2°S, 125.4°W, 3,606 m water depth) and Southeast Atlantic ODP Site 1094 (53.2°S, 05.1°E, 2,807 m water depth) with existing data from the global ocean to assess South Pacific Ocean ventilation changes and Pacific-Atlantic Ocean deep-water exchange over the past 1.7 Ma. The data show a good agreement between lower Circumpolar Deep Water (CDW) d¹³C signatures in the central South Pacific (U1541) and in the Southeast Atlantic (ODP Sites 1089, 1090 and 1094), suggesting a continuous homogenization of CDW between the Atlantic and Pacific sectors of the Southern Ocean over the past 1.7 Ma. Although we observe a continuous decline in CDW d¹³C signatures during the MPT in both the South Pacific and South Atlantic, vertical d13C gradients with underlying and overlying southern- and northern-sourced water masses, respectively, were much larger in the South Pacific than in the South Atlantic during the MPT. Our data provide on the one hand evidence for distinct Antarctic bottom water dynamics

in different sectors of the Southern Ocean during the MPT and on the other signifies a contribution of reduced glacial CDW ventilation and increased glacial respired carbon storage in the Southern Ocean to the MPT.