Phase equilibria point to cold and shallow depth conditions for magma storage at La Palma 2021 eruption

JOAN ANDÚJAR¹, BRUNO SCAILLET², RAMÓN CASILLAS³, IDA DI CARLO⁴, ANETA SLODCZYK⁵, DILETTA FRASCERRA⁶, CARMELA FEDERICA FARANDA, PHD⁷, MRS. MARÍA JIMÉNEZ MEJÍAS, PHD³, ELENA NÚÑEZ-GUERRERO⁵, STAVROS MELETLIDIS⁸, STEPHANE SCAILLET⁵ AND EXPERIMENTAL STUDENT GROUP FROM ORLÉANS-OLOT 2021-2022 COURSE⁵

¹Institut des Sciences de la Terre d'Orléans (ISTO), CNRS ²Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans, CNRS, BRGM

³Universidad de La Laguna (ULL)

⁴Institut des Sciences de la Terre d'Orléans

⁵Institut des Sciences de la Terre d'Orléans (ISTO), CNRS, Univ. Orléans, BRGM

⁶Institut des Sciences de la Terre d'Orléans (ISTO),Universite d'Orleans, CRNS, BRGM

⁷Univ. Orléans, CNRS, BRGM, ISTO

⁸Instituto Geográfico Nacional (IGN)

Presenting Author: juan.andujar@cnrs-orleans.fr

The Tajogaite 2021 eruption at La Palma emitted a variety of magmas with contrasted mineralogy and composition¹, this diversity potentially reflects the ponding of magmas at one and/or two seismically well-defined depths at ~10 and ~30 km². Hence, the short-term temporal evolution of the emitted products gives a unique opportunity to test the capability of available petrological methods to 1) constrain the pre-eruptive conditions of the emitted magmas and 2) capture the structure and evolution of the plumbing system related to this event. Application of available geothermometric tools as well as field magmas and crystallization depths \geq 15-30 km according to mineral and fluid barometers^{1,3,4,5,6}. These suggest that the petrological features of the magmas were mostly acquired in the deep hot mantle rather than at shallow crustal levels.

Within the framework of the experimental course held in Orléans with Latino-American and French students, we performed a set of crystallization experiments at variable temperatures (1150-900°C) and H₂O-CO₂ ratios to check these model estimates. Pressure was fixed at 300 MPa (10 km depth), in accord with seismic constraints, so as to capture the potential fingerprint (if any) left by the storage of the magmas at this depth. Experiments were performed on 3 representative samples covering the first month of the eruption and characterized by a mineralogy and petrology evolving from amphibole-bearing (tephrite) towards an amphibole-free and olivine+clinopyroxene dominated assemblage (basanite). The presence of amphibole in our experiments sets a maximum T for the opening phase at \leq 1065°C, this progressively increased to higher values along with increasing Mg# of the magma during the eruption. Yet, the

coexistence of Ol+Cpx in the most primitive products is found experimentally only at T < 1150°C. Our results thus indicate that the first erupted Tajogaite magmas were likely stored at a depth of 10 km and at temperatures 100°C lower than those inferred so far.

¹Day et al. 2022 EPSL, ²Del Fresno et al. 2023 NC, ³Romero et al. JVGR, ⁴Dayton et al 2023 SA ⁵Castro and Feisel 2022,NC ⁶Carracedo et al.2022.,GT.