"Experimental insight on the carbonaceous matter stability during subduction"

LAURIE BESOGNET1, BAPTISTE DEBRET1, JULIEN SIEBERT2, NICOLAS WEHR1 AND BENEDICTE MENEZ1

1Université Paris Cité, Institut de physique du globe de Paris, CNRS, UMR 7154
2Institut de physique du globe de Paris, Université Paris Cité, CNRS, UMR 7154

Presenting Author: besognet@ipgp.fr

Thermodynamic, experimental and field studies have suggested that organic compounds can be stable, and even dominate over inorganic carbon species, in subduction zones up to high pressure (HP; 0.5-6 GPa) and high temperature (HT; 600-1000°C). Slab-hosted organics can be formed either by carbonate destabilization during subduction or inherited from hydrothermal circulation at mid-ocean ridges. Of widespread occurrence in these settings are polycyclic aromatic hydrocarbons (PAHs) and/or genetically-related condensed carbonaceous matter, all spatially related to serpentine, and whose behavior during subduction is still unknown.

To assess the fate of these organic compounds during subduction, HP-HT experiments using either a piston-cylinder device or a multi-anvil press have been run at 500-1000°C and 3-7 GPa. Different anhydrous starting solids were tested, including either synthetic PAHs alone, with (1-hydroxypyrene, 1-pyrenebutyric acid) or without (pyrene) oxygen-bearing functional groups, or a mix of pyrene and powdered natural antigorite.

Our results show that the maturation of PAHs at HP-HT leads to the formation of graphitic carbon preserving a high structural disorder, possibly related to the persistence of O and H atoms in its network, far from pure graphite structure. We also observe the formation of aqueous fluids during oxygen-bearing PAHs experiments, suggesting water release from organics at HP-HT. Mix experiments involving pyrene and antigorite show various assemblages depending on experimental redox conditions, with oxidizing conditions stabilizing magnesite-enstatite-quartz over olivine-enstatite-graphitic carbon under reducing conditions. Our results highlight the poor reactivity of solid organic carbon towards serpentine-derived aqueous fluids under reduced conditions suggesting that the latter might facilitate the recycling of organic compounds to the deep mantle.