Goldschmidt 2023 Abstract https://doi.org/10.7185/gold2023.17751

Mantle CO₂ fluxes and carbonate fixation in volcanic hydrothermal systems in Iceland

BARBARA I KLEINE¹, MAUD J SMIT², DIEGO IGNACIO TORO², ANN MARIE DI STEFANO³, EMILY POPE⁴, TOD WAIGHT³, EMILIE THOMASSOT⁵, HEEJIN JEON⁶,
MARTIN WHITEHOUSE⁷, ENDY KEVIN PADILLA RIVAS⁸,
FRAUKE WIESE⁹, THRÁINN FRIDRIKSSON¹⁰, HALLDÓR ÁRMANSSON¹¹, SVEINBORG H. GUNNARSDÓTTIR¹¹, KIFLOM G MESFIN¹², ÁSGERÐUR K.
SIGURÐARDÓTTIR¹³, JENS FIEBIG¹⁴, ANDREA RICCI¹⁵, JÓHANN GUNNARSSON-ROBIN¹⁶, SAEMUNDUR A HALLDORSSON¹⁶, RÍKEY KJARTANSDÓTTIR¹⁶, SHUHEI ONO¹⁷, ÁRNÝ E SVEINBJÖRNSDÓTTIR¹⁶, RÓSA ÓLAFSDÓTTIR² AND ANDRI STEFÁNSSON²

¹GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg ²University of Iceland ³University of Copenhagen ⁴Climate Now ⁵Université de Lorraine ⁶Swedish Museum of Natural History ⁷Department of Geosciences, Swedish Museum of Natural History ⁸New Mexico Institute of Mining and Technology ⁹Europa-Universität Flensburg ¹⁰Reykjavík Energy ¹¹ÍSOR - Iceland Geosurvey ¹²HS Orka ¹³Landsvirkjun ¹⁴Goethe University Frankfurt ¹⁵Istituto Nazionale di Geofisica e Vulcanologia Palermo ¹⁶Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland ¹⁷Massachusetts Institute of Technology Presenting Author: barbarak@hi.is

Most of the Earth's natural CO_2 degassing from the mantle to the surface occurs within the major rift zones. Fixation of CO_2 in crustal carbonates may impact the efficiency and scale of such CO_2 emissions. However, the amount of CO_2 fixed and emitted within rift zones remains mostly unconstrained. Using the Iceland rift as an analogue to the submerged mid-Atlantic ridge, we use carbon abundance and isotope systematics in hydrothermal fluids, whole rocks and carbonates from rift-related geothermal systems to unravel the origin of CO_2 and quantify crustal fixation into carbonates within rift settings.

The targeted geothermal systems included the seawater dominated system at Reykjanes (SW Iceland) and the meteoric water dominated systems at Nesjavellir (SW Iceland) and Krafla (N Iceland). Hydrothermal fluids, altered whole rock and carbonate grains were collected from the wells drilled into the subsurface of these systems. Fluids showed large variations in the CO₂ concentration (267-3098 ppm) but insignificant δ^{13} C-CO₂ differences (-4.8 to -2.5‰). In contrast, large δ^{13} C variations of carbonates (-14.5 to +0.5 ‰) were observed. Carbon contents of altered rocks ranged from <0.01 to 4.33 wt.%. Thereby, carbon addition occurred within the upper 1000 m of the geothermal system whereas major losses of carbon were found at depths >1500 m.

Coupling the dataset with isotope and geochemical modeling revealed that carbon originates from a mantle source. Depressurization boiling of ascending hydrothermal fluids and water-rock interaction was found to be the main mechanism leading to carbonation. Only <1 to ~20% of the total mantle CO₂ degassing through the systems is sequestered into carbonates whereas the majority of the CO₂ is emitted to the surface through hydrothermal fluids, soil degassing and dissolved into groundwater. Active high-temperature geothermal systems in rift zones are thus inefficient in sequestering CO₂ and that surface CO₂ emissions closely resemble mantle flux and carbon isotope content fed into the systems.