Chalcophile elements on collision course: S and Se isotope ratio measurements using the Sapphire Dual Path MC-ICP-MS with Collision/Reaction Cell

DANIEL PETERS AND YVAN GÉRARD

Nu Instruments Ltd

Presenting Author: daniel.peters@ametek.com

Chalcophile elements and their isotope ratios provide insights into a wide range of terrestrial processes from mantle fractionation to hydrothermal alteration and enable environmental and biogeochemical tracing. In this study, we will present isotope ratio data for S and Se measured on a Nu Sapphire Dual Path MC-ICP-MS with Collision/Reaction Cell to remove isobaric interferences.

Plasma-based S isotope measurements suffer from several isobaric interferences such as ${}^{16}O_2^+$ on ${}^{32}S^+$, ${}^{16}O^{17}O^+$ on ${}^{33}S^+$, ${}^{16}O^{18}O^+$ on ${}^{34}S^+$, and ${}^{18}O_2^+$ on ${}^{36}S^+$. For Se, numerous Ar-based (Ar dimers, ${}^{40}Ar^{37}Cl$) and Kr interferences affect all Se isotopes and have limited the exploration of this isotopic system thus far. While O, Ar, and Kr-based interferences can be well-supressed using He-H₂ gas mixtures, both isotopic systems are prone to forming SH and SeH that will limit the accuracy of isotope ratio measurements. Thus, for both systems, a variety of reaction gases will be evaluated including He-H₂ and He-SF₆ gas mixtures as well as N₂.

Preliminary results using He-H₂ as reaction gas for Se reveal efficient Ar-Ar and Kr interference removal but significant SeH formation rates (~ 3%). After correction for SeH based on in-run measurements of ⁷⁸SeH⁺ relative to ⁷⁸Se⁺, Se isotope ratios in wet plasma using a self-aspirating nebuliser are well reproducible with a short-term repeatability of, e.g., $2\sigma_S SD < 35$ ppm for ⁸⁰Se/⁷⁸Se, $2\sigma_S SD < 45$ ppm for ⁷⁶Se/⁷⁸Se, or $2\sigma_S SD < 40$ ppm for ⁷⁷Se/⁷⁸Se (with s = sample). Individual measurement errors are between 10-40 ppm (2 $\sigma_S SE$) for the different major Se isotope ratios. Isotope fractionation is thereby demonstrable mass-dependent with linear regression slopes of 1.994-1.997 (R² = 0.999) for ln(⁸²Se/⁷⁸Se) vs. ln (⁸⁰Se/⁷⁸Se) over two analytical sessions.