Can clumped isotopes help us constrain the origin of H₂?

DAN LEVY¹, ISABELLE MARTINEZ¹, PIERRE CARTIGNY¹, JABRANE LABIDI¹, ISABELLE MORETTI², DARIUSZ STRAPOC³ AND ISABELLE LE NIR³

¹Institut de Physique du Globe de Paris
²Université de Pau et des Pays de l’Adour
³SLB

Presenting Author: dlevy@ipgp.fr

Dihydrogen (H₂) is becoming a key molecule for the energy transition. Many processes can lead to the formation of H₂ such as methane reforming, water electrolysis in the industry or hydrothermal alteration, radiolysis, volcanism and microbial processes in nature. Tracing the origin of H₂ in natural settings remains challenging. Bulk hydrogen isotopes provide some clues to distinguish high temperature H₂ from low temperature H₂, or to constrain whether a system is at the equilibrium or not. However, this signature does not lead to distinguish one type of H₂ from another.

H₂ clumped isotopes may allow constraining the origin of dihydrogen. This approach was pioneered by Popa et al. [1] on a MAT253-ULTRA. Natural gas samples were measured by Mangenot et al. [2], revealing that H₂ clumped isotopes appear re-ordered at environmental temperatures in most settings. However, all natural samples studied so far were hydrothermal gases, where hydrogen bonds had the potential to be activated by metal catalysts and re-ordered at environmental temperatures. Under those circumstances, H₂ clumping would not keep a record of dihydrogen synthesis.

Here we investigate on a collection of natural and experimental samples the potential for H₂ clumped isotopes to have escaped re-ordering to environmental temperatures. After a review, about the use of bulk hydrogen isotopes and their implications, we will present the process of clumped isotopes measurement, beginning with the purification of H₂ from other gases that can affect the fractionation of H₂. Based on the available data, we will finally present the preliminary results on the measurements of clumped isotopes of H₂ on the MAT253-ULTRA installed at IPGP.