Using organic biomarkers for paleoclimatic and paleoenvironmental reconstruction at low latitudes: the NGaoundaba peat record

VALENTINE SCHAAFF1, VINCENT GROSSI2, MATTHEW MAKOU1, SALOMÉ ANSANAY-ALEX1, BALKIS EDDHIF1, PIERRE DESCHAMPS3, BRUNO HAMELIN3, YANNICK GARCIN3, DAVID SEBAG4, BENJAMIN NGOUNOU NGATCHA5 AND GUILLEMETTE MÉNOT1

1LGLTPE, Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS
2Laboratoire de Géologie de Lyon
3CEREGE, Aix Marseille Univ, CNRS, IRD, INRAE, Coll France
4IFP Energies Nouvelles, Direction Sciences de la Terre et Technologies de l’Environnement
5LAMISE, University of NGaoundéré, NGaoundéré

Presenting Author: valentine.schaaff@ens-lyon.fr

Past climate and environment reconstructions are limited by the availability and quality of the sedimentary archives particularly in the continental domain. As organic-rich sediments, peat deposits are promising archives but their full exploitation for paleoenvironmental and paleoclimatic reconstructions in tropical Africa is still at its beginning [e.g.,1, 2]. In this study, we present a 10-ka multi-proxy record at a centennial time scale resolution from the NGaoundaba peatland (Northeastern Cameroon). Based on bulk geochemical data, a broad panel of lipid biomarkers [isoprenoid and branched glycerol dialkyl glycerol tetraethers (isoGDGT and brGDGT respectively), n-alkane distribution and carbon and hydrogen stable isotopic compositions, hopanoids and plant degradation products] and pollen data, we reconstruct Holocene changes in West African temperature, precipitation, vegetation and methane cycle.

The range of δD variation, as recorded by n-alkanes, is large compared to other West African sites [e.g., 2, 3]. Mid- and high-elevation tropical peat deposits are generally dominated by sedges growing in a water-laden environment and producing long-chain n-alkanes that can be affected by water enrichment through evaporation and thus affect δD variations.

Higher GDGT-based temperatures associated with δ13C signature of C3 plant n-alkanes and increased precipitation indicated by the δD composition of the C31 n-alkane between 10 and 5.8 ka cal BP are consistent with the timing of the African Humid Period [4]. This period is interrupted by a millennial-scale event at 8–9 ka that seems to have affected in-situ microbial production, plant growth and the dynamics of the colonial microalga Botryococcus braunii. The impact on local vegetation is not yet clear as long-chain n-alkanes are unevenly affected, suggesting a complex response of the local and regional environment. We compare absolute values and relative abundances of GDGT-0 and Crenarchaeol to assess past methanogenic activity. The δ13C of hopanes is used to assess the contribution of methanotrophs in bacterial populations.