Geochemical behavior of beryllium-9 in the Changjiang estuary: the importance of benthic fluxes

CHENYU WANG¹, FRIEDHELM VON BLANCKENBURG^{1,2}, ERGANG LIAN³, SHOUYE YANG⁴, JEFFREY PAULO H. PEREZ¹ AND HELLA WITTMANN¹

¹GFZ German Research Centre for Geosciences

²Freie Universität Berlin

³State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

⁴State Key Laboratory of Marine Geology, Tongji University Presenting Author: ch wang@gfz-potsdam.de

Knowledge of exchange processes between the particulate and the dissolved phases for trace metals and their fluxes from rivers to estuaries to oceans is key to quantifying their marine geochemical budgets. Beryllium (Be) is a particle-reactive element still much overlooked in ocean elemental budgets, despite the ratio of its cosmogenic (¹⁰Be) to stable (⁹Be) counterpart being a tracer of past continental weathering and ocean circulation. We investigated the role of estuaries in moderating riverine 9Be flux into the global ocean. We present a detailed profile of ⁹Be concentrations along the entire salinity gradient in the Changjiang (Yangtze River) estuary for both surface and bottom waters as well as ⁹Be carried by the corresponding suspended particulate matter (SPM). Concentrations of dissolved ⁹Be exhibit a so-far undocumented behavior in the Changjiang estuary. Upon entering the estuary, dissolved ⁹Be is initially removed at low salinity due to saltinduced colloidal flocculation. At mid-salinity (both in surface and bottom waters), ⁹Be is released back into the dissolved phase. At high salinity where water is stratified, dissolved ⁹Be is scavenged from surface waters but is released into bottom waters. In combination with hydro-physicochemical data (i.e. SPM concentration, pH, dissolved oxygen, and dissolved inorganic phosphorus), we suggest the removal of ⁹Be from surface waters of the stratified zone is likely associated with organic matter scavenging facilitated by phytoplankton blooms. Benthic processes including porewater diffusion and expulsion or submarine groundwater discharge are responsible for the release of ⁹Be. We find that hypoxia conditions in bottom waters may enhance the benthic flux of ⁹Be. This benthic-sourced ⁹Be may contribute to surface waters when water is vertically mixed or in zones of upwelling. Therefore, when exploring the mechanisms that modulate the riverine input of dissolved ⁹Be to the oceans, considering only surface dissolved ⁹Be data from shallow estuaries does not suffice. Rather, to calculate the ⁹Be flux to the oceans, the contribution of the benthic flux also needs to be accounted for.