Removal of As(V) from waters by reaction with cerussite PbCO₃

EWA BARBARA STĘPIEŃ¹, JULIA SORDYL^{1,2} AND MACIEJ MANECKI^{1,2}

¹AGH University of Science and Technology ²Uppsala University

Presenting Author: estepien@agh.edu.pl

Arsenic is one of the most toxic elements and occurs at concentrations above drinking water standards (0.01 mg/ dm³) in many parts of the world [1]. A novel method for removal of AsO_4^{3-} ions from aqueous solutions is proposed herein. The principle of the method is based on reaction with cerussite PbCO₃ in the presence of Cl⁻ ions, resulting in precipitation of mimetite Pb₅(AsO₄)₃Cl.

To determine the effectiveness of the method, solutions containing 50 mg As(V)/dm³ were reacted with synthetic crystalline cerussite powder (grain size 2 - 10 μ m) at pH from 2 to 8 in the presence of Cl. The solutions were tested for AsO₄³⁻ and Pb (using colorimetry and AAS, respectively) while solids were analysed by XRD and SEM-EDS.

In all experiments, As(V) is removed and mimetite forms as fine-crystalline incrustations on the surface of cerussite. Most of the As is eliminated from solution within one day of the reaction. After 5 days, the [As] stabilizes to values between 0.82 mg As(V)/dm³ for pH=2 and 6.07 mg As(V)/dm³ for pH=8. Repeating the procedure three times with the same solution but a new portion of cerussite results in a further reduction in [As] to values below 0.04 mg As(V)/dm³ and 4.57 mg As(V)/dm³ for pH=2 and pH=8, respectively. The same cerussite can be used several times: a 4-time repeated use with a new solution still results in a decrease in [As].

Very low solubility of mimetite, with which the solution is in equilibrium, ensures that As(V) and Pb concentrations are very low. The best results are obtained at a pH between 4 and 6: [As] is reduced by more than 96% and cerussite can be used several times since mimetite incrustations do not block the surface of the reacting cerussite. Optimization of this method can lead to the development of new technology for As(V) removal from aqueous solutions.

This research was funded by AGH University of Science and Technology project No 16.16.140.315.

[1] Murcott S. (2012). Arsenic Contamination in the World. IWA Publishing, London.