The nickel output to abyssal pelagic manganese oxides: a balanced elemental and isotope budget for the oceans

SARAH FLEISCHMANN1, JIANGHUI DU1, ADITI CHATTERJEE1, JAMES MCMANUS2, SRIDHAR D. IYER3, ANKEETA AMONKAR4 AND DEREK VANCE1

1Institute of Geochemistry and Petrology, ETH Zurich
2Bigelow Laboratory for Ocean Sciences
3CSIR-National Institute for Oceanography
4Dnyanprassarak Mandal's College and Research Centre

Presenting Author: sarah.fleischmann@erdw.ethz.ch

The development of nickel (Ni) isotopes as a chemical tracer of past ocean environments requires a sound understanding of the modern oceanic budget. Our current understanding of this budget implies a large elemental and isotope imbalance between inputs to and outputs from the dissolved pool of the ocean [e.g. 1]. This imbalance is mainly caused by the dominant oxic sink of Ni to manganese (Mn) oxide-rich sediments. Though the Ni isotope composition of Fe-Mn crusts has previously been used as proxy for the Ni isotope composition of these sediments, crusts and nodules represent a very small part of the total Mn oxide output [2]. Instead, Mn oxide microparticle supply to pelagic and hemipelagic sediments dominates the removal of Mn to sediments [2], but there are very few isotope data for such samples.

Here we present the first extensive Ni concentration and isotope dataset from fully oxic Mn-rich pelagic sediments, from 6 different sites across the open Pacific and 10 sites in the Indian Ocean. We also present data for one hemipelagic site representing suboxic Mn-rich sediments of the California Margin. All the analysed sediments are isotopically lighter than seawater (δ^{60}Ni = +1.33; [3]). The Ni isotope compositions of fully oxic abyssal sediments range from +0.26 to +1.08‰, whereas the organic-rich Californian Margin sediments are lighter at around -0.08‰.

We show that the Ni isotopes of nearly all Mn-rich sediments and deposits analysed to date are correlated with Co/Mn ratios, suggesting that they are controlled by accumulation rate, progressive incorporation of Ni into the metal oxide structure and isotopic re-equilibration between the solid and aqueous phase. We present a new mass balance calculation producing a budget that can be simultaneously balanced for both amounts and isotope compositions of Ni. This result provides a strong basis for the application of Ni isotopes as records of the evolution of the metal sink from the oxic oceans through Earth history.