Stable mercury concentrations in tunas from the global ocean arise question about monitoring the effectiveness of the Minamata Convention

MRS. ANAÏS MÉDIEU¹, DAVID POINT², JEROEN E SONKE³, PEARSE BUCHANAN⁴, NATHALIE BODIN⁵, DOUGLAS ADAMS⁶, ANDERS BIGNERT⁷, DAVID STREETS⁸, ANGOT HÉLÈNE⁹, FRÉDÉRIC MÉNARD¹, C. ANELA CHOY¹⁰, VALÉRIE ALLAIN¹¹, TAKAAKI ITAI¹², PACO BUSTAMANTE¹³, BRIDGET FERRISS¹⁴, BERNARD BOURLÈS¹, JÉRÉMIE HABASQUE¹⁵, OLIVIER GAUTHIER¹⁵ AND ANNE LORRAIN¹⁵

¹IRD

²Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier Toulouse III ³CNRS/Université de Toulouse ⁴Carnegie Science ⁵Sustainable Ocean Seychelles (SOS) ⁶Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute ⁷Department of Environmental Research and Monitoring, Swedish Museum of Natural History ⁸Harvard John A. Paulson School of Engineering and Applied Sciences ⁹CNRS ¹⁰Scripps Institution of Oceanography, University of California San Diego ¹¹Pacific Community ¹²Department of Earth and Planetary Science, The University of Tokyo ¹³LIENSs - CNRS-La Rochelle Université ¹⁴National Oceanic and Atmospheric Administration ¹⁵IRD, Univ Brest, CNRS, Ifremer, LEMAR, F-29280 Plouzané, France Presenting Author: anais.medieu@ird.fr

Humans are exposed to toxic methylmercury mainly by consuming marine fish. While reducing mercury emissions aim to protect human health, it is unclear how this affects methylmercury concentrations in seawater and marine biota. We compiled existing and newly acquired mercury concentrations in tropical tunas over 50 years in the global ocean to explore the multidecadal variability of mercury content in pelagic top predators. We show strong inter-annual variability of tuna mercury concentrations at the global scale, once accounting for bioaccumulation. We find increasing mercury concentrations in skipjack in the late 1990s in the northwestern Pacific, likely resulting from concomitant increasing Asian mercury emissions. Elsewhere in the global ocean, stable long-term trends of tuna mercury concentrations and deposition since the 1970s, and with specific regional trends. We suggest the slow or absent response in tuna mercury to global mercury release likely reflects the inertia of the surface ocean, which is supplied by legacy mercury accumulated in the subsurface ocean over centuries. This highlights that the actions implemented by the Minamata Convention are currently insufficient to assure a reduction in mercury concentrations in highly consumed pelagic fishes, and calls for long and continuous mercury time series in marine biota.