Deep mantle chemical heterogeneities: new insight from the measurement of the ¹³⁸La-¹³⁸Ce and ^{146,147}Sm-^{142,143}Nd systematics in Hawaiian basalts

MAUD BOYET¹, RÉGIS DOUCELANCE², JULIEN SEGHI², DELPHINE AUCLAIR², NICOLE M.B. WILLIAMSON³ AND DOMINIQUE WEIS³

 ¹Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans
²Université Clermont Auvergne
³University of British Columbia

Presenting Author: maud.boyet@uca.fr

The Hawaiian mantle plume rises from the northeastern edge of the Pacific LLSVP near the core-mantle boundary (Garnero et al., Nat. Geo. 2016). Geochemical studies of Hawaiian lavas have shown that during the past 5 Myr, two parallel volcanic chains were formed, Loa and Kea, with distinct geochemical compositions. The more enriched Loa material is sourced from within the Pacific LLSVP, whereas the ambient lower mantle supplies the more depleted Kea lavas (Weis et al., Nat. Geo. 2011; G3 2020). The heterogeneous nature of the lower mantle reflects the long-term recycling of surface material and the potential preservation of early-formed reservoirs in the deep Earth. To provide new insight into the nature of deep mantle chemical heterogeneities, we present measurements of ¹³⁸La-¹³⁸Ce and ^{146,147}Sm-^{142,143}Nd systematics in ~30 Hawaiian basalts. All these samples were previously measured for an extensive range of isotopic systematics (Weis et al., G3 2020; Williamson et al., G3 2021).

Results obtained on the two long-lived ¹³⁸La-¹³⁸Ce and ¹⁴⁷Sm-¹⁴³Nd systematics confirm that samples from the Kea Trend have the most depleted isotopic composition (eps¹³⁸Ce down to -1.2 and eps ¹⁴³Nd up to 7.4). The most enriched signatures are measured in samples from Koolau volcano that represent the enriched Loa end-member (eps¹³⁸Ce and eps¹⁴³Nd values close to 0). The La-Ce isotopic system is a potential proxy to trace the recycling of pelagic sediment in the mantle. All Hawaiian basalts plot along the eps¹³⁸Ce-eps¹⁴³Nd mantle array, and we did not identify any correlation between eps¹³⁸Ce and heavy Tl isotopic compositions measured in some Kea samples.

The ¹⁴⁶Sm-¹⁴²Nd systematics have been measured on 20 samples collected in volcanoes from the two trends. All samples analyzed so far have ¹⁴²Nd/¹⁴⁴Nd ratios similar to the value measured in the JNd-1 terrestrial standard (2SD=5ppm). In a few Hawaiian samples ¹⁸²W tungsten isotopic data correlate negatively with ³He/⁴He (Mundl et al., Science 2017). The lack of variation in ¹⁴²Nd/¹⁴⁴Nd in these samples 1) supports the ¹⁸²W anomalies to be related to the core, and 2) questions the preservation of magma ocean crystallization products in the