The oxidation state of titanium in reduced extraterrestrial melts

ANDREW BERRY¹, PATRICIA DOYLE², PAUL SCHOFIELD³, LAURA MILLER¹, CHARLES LE LOSQ⁴, ANTONY BURNHAM¹ AND J. FREDERICK W. MOSSELMANS⁵

¹Australian National University
²Imperial College London
³Natural History Museum
⁴Université Paris Cité, IPGP
⁵Diamond Light Source
Presenting Author; andrew.berry@anu.edu.au

Titanium occurs exclusively as Ti⁴⁺ in most natural terrestrial materials, however, under reduced conditions it may also occur as Ti³⁺. For example, Ti³⁺ is found in armalcolite in high-Ti Lunar basalts and in both hibonite and fassaite in chondritic meteorites. The proportion of Ti as Ti³⁺ in these minerals is a potential indicator of the oxygen fugacity (fO_2) of the process during which they formed. However, predicting Ti³⁺/Ti⁴⁺ in the system from which these minerals may have crystallised is experimentally challenging because of the extremely reduced conditions.

The oxidation states of Ti in five synthetic silicate glass compositions, quenched from melts equilibrated at 1400 °C, atmospheric pressure, and fO_2s in log units relative to the fayalite-magnetite-quartz (FMQ) buffer from FMQ+3.3 to FMQ-10.2 (from +6.6 to -6.9 log units relative to iron-wüstite, IW), were investigated by Ti K-edge X-ray absorption near edge structure (XANES) spectroscopy. All spectra could be well fit by a linear combination of the spectra recorded from the most oxidised and reduced samples of the same composition, indicating that the samples only contain two Ti species. Ti^{3+}/Ti_{Tot} (where $Ti_{Tot} = Ti^{3+} + Ti^{4+}$) = 0 for the most oxidised samples but is unknown for the most reduced. Thus, the linear combination fit results were used in a regression model in which Ti³⁺/Ti_{Tot} of the reduced end-member was varied to give Ti3+/Ti_{Tot} values of the other samples that best fit the thermodynamically expected dependence of Ti^{3+}/Ti_{Tot} on fO_2 . The most reduced samples were found to have ${\rm Ti}^{3+}\!/{\rm Ti}_{\rm Tot}\sim 0.6.$ The resulting modified equilibrium constants of the Ti oxidation reaction, logK', are linearly correlated with the optical basicity parameterisation of melt composition, such that as optical basicity decreases, Ti^{3+}/Ti_{Tot} increases, at constant fO_2 . This correlation allows Ti³⁺/Ti_{Tot} to be predicted for other compositions and, assuming that the temperature dependence of Ti³⁺/Ti⁴⁺ is parallel to FMQ, a general equation relating Ti^{3+}/Ti^{4+} to fO_2 was obtained. This equation was used to predict Ti³⁺/Ti_{Tot} as a function of fO₂ for high-Ti Mare basalt, chondrule (CV and CM), and calcium aluminium inclusion (CAI; Type A and B) compositions.