Indium (In) speciation and equilibrium In isotope fractionation between chloride-rich aqueous solution and minerals

DR. HAOCHEN DUAN¹ AND FANG HUANG²

 ¹School of Earth and Space Sciences, University of Science and Technology of China
²University of Science and Technology of China

Presenting Author: duanhc@ustc.edu.cn

Understanding the behavior of indium during magmatichydrothermal and atmosphere-hydrosphere interactions requires the speciation of indium (In) in aqueous fluids associated with their isotope effects. Nonetheless, little attention has been paid to In³⁺ speciation and equilibrium indium isotope fractionation. We explore indium speciation in neutral aqueous solutions and examine reduced partition function ratios ($\ln b$) of $^{115}In/^{113}In$ in aqueous solutions and In-bearing minerals using the firstprinciples calculation. The results demonstrate that the most abundant species in aqueous solutions are InCl₃(H₂O)₅, $[InCl_{2}(H_{2}O)_{2}]^{+}$, and $[InCl_{2}(H_{2}O)_{2}]^{+}-[(H_{2}O)_{2}Cl_{2}Na]^{+}$ species. The proportion of aqueous In³⁺ species fluctuates with indium contents, demonstrating that cation concentration could influence the ligand ratios. The $10^{3} \ln b$ decreases in the order dzhalindite > $InCl_3(H_2O)_5 > laforetite > roquesite > cadmoindite > yixunite >$ indite > damiaoite > $[InCl_2(H_2O)_2]^+ \approx [InCl_2(H_2O)_2]^+$ $[(H_2O)_2Cl_2Na]^+$ > native indium. The study of equilibrium indium isotope fractionation factors not only provides new insights into the equilibrium indium isotope fractionation, but it also has a lot of potential in geological and supergene processes.