New Frontiers for ⁸¹Kr-Dating

HAO LI¹, JINGWEN YAN¹, WEI JIANG¹, ZHENG-TIAN LU¹, FLORIAN RITTERBUSCH¹ AND GOUMIN YANG²

¹University of Science and Technology of China ²university of science and technology Presenting Author: lhustc@mail.ustc.edu.cn

⁸⁵Kr, ³⁹Ar, and ⁸¹Kr are ideal tracers for environmental water samples, such as groundwater, sea water, polar ice and mountain glacier ice. Combined with ¹⁴C, these tracers cover a wide age range from a few years to 1.3 million years. Several interesting studies featuring this novel tracer have been published in recent years. In this talk we will report the latest developments on radiokrypton dating in our laboratory at the University of Science and Technology of China (USTC).

As for ⁸¹Kr-dating, we would like to show developments in two frontiers. Firstly, we have improved high precision ⁸¹Krdating method. The analytical certainly of relative abundance of ⁸¹Kr now approaches 1% for groundwater samples between 10 ka and 230 ka. The high precision ⁸¹Kr-dating requires a minimum sample of 10 μ L STP Kr, which is a few times more than the sample needed for the regular analysis (2-3 μ L STP Kr). Secondly, we have developed an all-optical ATTA method based on a metastable Kr atom production scheme using a home-build bright Vacuum Ultraviolet (VUV) source. The new method has reduced the cross-sample contamination significantly. As a result, analysis with only 1 kg of ice samples is now possible.