The impact of multi-stage metamorphism on preservation of traces of life in ~2.5 Ga banded iron formations, North China

JINGBO NAN1, ZIDONG PENG2, CHAO WANG3, DOMINIC PAPINEAU4, ZHENBING SHE5, ZIXIAO GUO6,7, CHANGLE WANG2 AND RENBIAO TAO1

1Center for High Pressure Science and Technology Advanced Research (HPSTAR)
2Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
3School of Earth and Space Sciences, Peking University
4London Centre for Nanotechnology
5China University of Geosciences
6Department of Earth Sciences, London Centre for Nanotechnology, and Centre for Planetary Science, University College London
7Hebei Normal University

Presenting Author: jingbo.nan@icloud.com

Biological organic molecules preserved within Precambrian banded iron formations (BIFs) can provide valuable information about the origin and evolution of life [1]. It is widely acknowledged that metamorphic alterations of biological organics result in an obstacle in identifying early life traces [2]. Nevertheless, the physiochemical mechanisms responsible for these alterations remain insufficiently comprehended. In this study, we present petrographic observations and nanogeochemical investigations on the carbonaceous matter (CM) in ~2.5 Ga BIFs from North China, which have undergone significant alteration during lower amphibolite-facies prograde metamorphism, and subsequent retrograde alteration. The CM is in paragenetic equilibrium with prograde mineral phases, and is often associated with apatite that occurs in Fe-rich bands parallel to layering. This implies that the CM is most likely inherited from syn-depositional biomass, as confirmed by the nanoscale infrared spectroscopy, which shows the presence of C=C, C–H, and C–N/N–H bonds. Raman spectroscopy reveals that the maximum metamorphic crystallization temperature is consistent with the metamorphic peak conditions of the host BIFs. The BIFs possess average bulk 13C$_{organic}$ values of -20.0% and $^{\delta^{13}}$C$_{carbonate}$ values of -12.9%, further indicating syngenetic biomass remineralization during prograde metamorphism. This thermal cracking process may have released gaseous hydrocarbons, as shown by secondary CH$_4$ fluid inclusions in quartz. We further use quantum mechanical simulations to assess the stability of organic chemical bonds during prograde metamorphism (0-600°C, 0-15 kbar). The relatively high thermal durability of C–H and the armoring effects of primary organic-phyllosilicate complexes may account for C–H preservation in BIFs. Furthermore, the electron microscopy reveals widespread nanopore-scale reactions. Our findings highlight the importance of evaluating metamorphic effects on the preservation of primordial microorganisms, particularly those found in ancient iron-rich sediments.