A model of unidirectional and accumulative fluxes from mantle to the lithosphere explaining crustal growth via triple oxygen isotope mass balance throughout Earth's history

ILYA BINDEMAN 1, YOSHIKI KANZAKI 2 AND JAMES $$\rm PALANDRI^1$

¹University of Oregon ²Georgia Tech University Presenting Author: bindeman@uoregon.edu

We here propose a model of a global mass balance of crustal recycling and growth based on the temporal variations of D'17O and d¹⁸O in an attempt to explain temporal d¹⁸O increase of the hydrosphere recorded by multiple sedimentary proxies (shales, cherts, and carbonates) with decreasing age. We have recently reported on a coeval 0.2% d¹⁸O decrease of continental mantle peridotite from the primary Earth-Moon value of 5.57% [1] from mid-Archean to Phanerozoic attributed to the initiation of surface recycling sometime in the Archean linked to plate tectonics initiation or its style. This is balanced by a trend in shales and granites that show d¹⁸O increase through time, and a stepwise decrease in D'17O, at around 2.4 Ga. We present new analyses of shales and granites that further support and resolve these observations. The trend is explained by emergence of land and initiation of subaerial oxidative weathering (generating highd¹⁸O, low-D'¹⁷O products) in the mid-Archean [2-3]. In our model, high-d¹⁸O sediments are progressively accreted into the growing continental crust, while low-d¹⁸O peridotitic interiors of imbricating and subducting slabs are accreted under continental lithosphere on Ga-timescales [1], creating a positive d¹⁸O flux to the surface measuring 4‰ over 2 Ga. Flux can be made larger if low-d¹⁸O slabs are additionally lost into convecting mantle, after delivering their high-d¹⁸O tops (sediments, basaltic pillows) to the growing crust. We construct a series of mass balance simulations and demonstrate that a 0.5-3% increase in ocean d¹⁸O values is possible due to these processes. Including the change in the processes observed in continental granites around 1 Ga may then account for even as much as 10% increase in seawater d¹⁸O from the pre-1Ga Earth. Furthermore, using triple oxygen isotope systematics, we suggest that isotopically negative ocean (-5‰ or lower, [3]) does not conflict with previously held global mass-balance of high-temperature hydrothermal vs weathering fluxes, due in part to a planet with plate tectonics and decoupling of water-rock interaction at mid-ocean ridges.

¹Bindeman et al. (2022) *Nat Comm* 13, 3779; ²Bayon et al. 2022. *EPSL*, 584, 117490; ³Kanzaki and Bindeman (2022) *Chem Geol* 604, 120944