Laser based S isotope analysis of weathered 'super-heavy' Neoproterozoic sulphides and Rb–Sr dating of illite from Kapunda, South Australia

ZARA WOOLSTON^{1,2}, JURAJ FARKAS^{1,3}, SARAH GILBERT^{3,4}, LUCY MCGEE^{1,2}, ANNA PETTS^{2,5}, ADRIAN FABRIS^{2,5} AND CARMEN KRAPF⁵

¹University of Adelaide, Earth Sciences ²Mineral Exploration Cooperative Research Centre

³University of Adelaide

⁴Adelaide Microscopy

⁵Geological Survey of South Australia, Adelaide

Presenting Author: zara.woolston@adelaide.edu.au

Biogeochemical cycling of elements can be used to vector subsurface ore deposits via analysis of the cover and the interactions across the soil-water-plant system. Tracing isotopic fraction of certain elements from their original depositional environment, through a range of alterations to in-situ weathering and creation of supergene zones. This study couples new sulphide laser based S isotopes data and Rb-Sr dating of illite both measured via LA ICPMS/MS. Kapunda is located 90 km north of Adelaide, South Australia, and is the oldest commercial copper mine in Australia. This sediment-hosted Cu deposit is hosted in carbonaceous siltstone host-rocks of the Neoproterozoic Tapley Hill Formation, in-situ weathering reaches depths of up to 100 metres and result in a Cu-rich supergene environment. Previously published S isotope data from sulphides at Kapunda displaying 'super-heavy' δ^{34} S (CDT) signatures of up to 40% in both syn-sedimentary and vein chalcopyrite and pyrite. Samples for this study were taken across 500 metres of core, covering a complete regolith profile. SEM MLA images of specific samples were used to identify sulphides for isotopic analysis and illite for Rb-Sr dating. These results indicated alteration of the Tapley Hill Formation at ca. 527 ± 44 Ma during the Delamerian Orogen. These 'super-heavy' sedimentary pyrite in the Tapley Hill Formation have $\delta^{34}S$ values that fall within globally reported marine pyrite δ^{34} S datasets recording a time interval between the Sturtian and Marinoan glaciations (ca. 715-650 Ma). Novel laser-based S isotope techniques on sulphides and sedimentary rocks allow the observation of diagenetic redox conditions, fluid sources and weathering alteration of mineralisation via laser based stable S isotopic analysis. Our results reveal δ^{34} S of all samples taken from the Tapley Hill Formation at Kapunda is within 12-50% for both chalcopyrite and pyrite. Overall δ^{34} S results from Tapley Hill Formation track the global sulphur isotope anomaly (ranging from 20-50‰), but the data becomes more scattered and variable in the shallower and more weathered horizons.