Dypingite series defined by the content of molecular H₂O

YANG LU¹, ANTON SEDNEV-LUGOVETS², PATRICIA CARVALHO³, MATYLDA GUZIK², KRISTINA DUNKEL⁴, HÅKON AUSTRHEIM⁴ AND HENRIK FRIIS¹

¹Natural History Museum, University of Oslo

²Department of Technology Systems, University of Oslo ³SINTEF Industry, Department of Sustainable Energy

Technology

⁴Physics of Geological Processes (PGP), The Njord Centre, University of Oslo

Presenting Author: yang.lu@nhm.uio.no

Carbonation of ultramafic rocks can effectively reduce atmospheric CO_2 by fixing it as carbonate minerals. One of the main phases, dypingite $Mg_5(CO_3)_4(OH)_2 \cdot 5H_2O$, has been proved to be stable under Earth surface conditions over hundreds of years. Therefore, the above method could be a safe and feasible scheme to reduce carbon in the atmosphere. In order to increase the carbon-fixing efficiency and explore other environmental friendly applications of dypingite, it is necessary to know the composition and structure of dypingite. However, since dypingite was first described in 1970, its composition and structure have not been fully determined. This study provides initial results that indicate the composition and structure of dypingite collected from the Feragen Ultramafic Complex and Dypingdal, Norway.

Dypingite from both areas forms aggregates of plates resulting in a rose texture. The X-ray diffraction (XRD) patterns of over 100 dypingite samples do not show consistent diffraction peak positions. Major variations are shown at around 8.5°, 16°, and 31° 20 (Cu radiation), which are all shifting. Thermogravimetric analysis (TGA) indicates that contents of molecular H₂O change with the position of the above three peaks. This correlation is confirmed by the XRD patterns of dypingite incubated under a series of humidities. Moreover, TGA results suggest a slight change of (CO₃) and (OH) contents.

Our initial results suggest that dypingite should be considered as a series of phases with different hydration degrees. The number of molecular H_2O is controlled by the ambient humidity, while the contents of (CO₃) and (OH) may be influenced by the pH and alkalinity of the precipitating fluid.