Young apparent ages (<1000 years) of hyperalkaline groundwater in the peridotite section of the Samail Ophiolite, Oman

AMELIA N PAUKERT VANKEUREN¹, MARTIN STUTE², JUERG MATTER³, FLORIAN MEIENBURG⁴, WERNER AESCHBACH⁴, MARKUS OBERTHALER⁴ AND GRACE BROWN⁵

¹California State University, Sacramento
²Lamont-Doherty Earth Observatory
³University of Southampton
⁴Heidelberg University
⁵Barnard College - Columbia University
Presenting Author: vankeuren@csus.edu

The rate of peridotite (mantle rock) alteration (serpentinization, oxidation, and carbonation) by meteoric water in a continental environment remains unknown. Lab experiments suggest low-temperature alteration should be minimal, but field evidence in the form of hyperalkaline (pH >11) water with H_2 gas in ophiolites around the world suggests it may occur at a significant rate. Groundwater ages in peridotite provide a possible constraint on alteration rates by serving as a maximum timeframe for this water-rock interaction.

Groundwater in the mantle section of the Samail Ophiolite, Oman has been evaluated using multiple age tracers: 3 H, 39 Ar, and 14 C. Type I shallow Mg-HCO₃ groundwater samples have 39 Ar apparent ages ranging from modern to 210 years, while uncorrected 14 C ages range from 240 to 14,000 years. d 13 C in these samples is -15 to -9 ‰ and 3 H is 1 to 2 TU, though one sample has 0.4 TU. This water may be considered the starting point for continued alteration in a system closed off from the atmosphere. The resulting Type II hyperalkaline (pH >10) Ca-OH waters have 39 Ar apparent ages ranging from 90 to 720 years and uncorrected 14 C ages from 820 to 12,000 years. These samples are depleted in d 13 C with values of -22 to -17 ‰. 3 H is less than 0.7 TU. Tracer distributions suggest that two or more component mixing is likely an important process in this fracture flow dominated system.

The apparent disparity between ³⁹Ar and uncorrected ¹⁴C ages may be attributed to changes in ¹⁴C along the groundwater flow path. NETPATH simulations demonstrate that precipitation of carbonate minerals and associated fractionation can account for the removal of dissolved carbon and depletion of d¹³C along the path from Type I to Type II groundwater, but that exchange with old carbonate veins within the ophiolite is necessary to attain ¹⁴C ages so much older than the ³⁹Ar ages.

The relatively young (<1000 years) ³⁹Ar ages of Type II groundwater samples suggest that the geochemical processes responsible for producing hyperalkaline Ca-OH water are either faster than previously thought, or mixing and/or other chemical reactions are at play.