A review of global bedrock (²³⁴U/²³⁸U) disequilibrium and its impact on inferring sediment comminution age in Taiwan Island

CHAO LI AND NICHOLAS CHIA WEI NG

State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Presenting Author: cli@tongji.edu.cn

The ²³⁴U-²³⁸U disequilibrium system is widely used in Earthsurface process studies, but many applications require an assumption of initial bedrock ($^{234}U/^{238}U$) activity ratios (A_0) which is often assumed to be in secular equilibrium. However, recent studies have challenged this assumption, as A_0 can be modified by geologic factors such as tectonism, lithology, and climate, especially in the near-surface region. This study compiled published global A_0 values ranging from 0.700 to 1.280, with an average of 0.981 \pm 0.070 (2 σ ; n = 160). The widely observed 234U depletion among global bedrock is attributed to the preferential release of ²³⁴U from microfissures created during rock diagenesis and hydrothermal alteration processes. The local lithology and precipitation amount also play an important role in bedrock A_0 disequilibrium. The study also highlights that bedrock samples can likewise be enriched with 234 U, as evidenced by the nine chemically treated bedrocks' A_0 compiled in this study, ranging from 1.002 to 1.020 (n = 9), attributed to alpha recoil gain from neighboring grains or surface deposits enriched with uranium. In addition, this study demonstrates the impact of A_0 on the "comminution age" approach, which enables quantitative constraints of sediment transport timescale since the genesis of detrital sediment. A case study of the Zhuoshui River (Taiwan Island) sediment comminution age is re-calculated using the newly measured A_0 from the Zhuoshui River basin, which is 0.978 on average. The newly derived comminution age is nearly three-fifths shorter than the values estimated using $A_0 = 1$ in the previous study, demonstrating that assuming bedrock secular equilibrium could lead to overestimated comminution age. Therefore, A_0 should be carefully constrained with an optimal sampling strategy to provide a holistic perspective of catchment-scale earth-surface processes.