Coprecipitation of Ce with lead phosphates

KACPER STASZEL AND MACIEJ MANECKI

AGH University of Science and Technology Presenting Author: kstaszel@agh.edu.pl

There is growing interest in alternative pathways for recovery of REE, especially from apatite sources, as modern technologies require a steady supply of critical elements. Phosphates have strong affiliation with metals, including REE and Pb. It was hypothesized that, similarly to Ca-apatites, also Pb-apatite (pyromorphite $Pb_5(PO_4)_3Cl$) can embed significant amounts of REE in the structure. A series of model experiments were carried out for coprecipitation of Ce with Pb-phosphates leading, among others, to formation of pyromorphite-Ce (PYM-Ce).

Synthesis of PYM-Ce were conducted at ambient conditions, at pH 1-11, by mixing solution containing relatively high concentrations of Pb and Ce (~15000 and ~1700 ppm, respectively) with solutions containing stoichiometric concentrations of PO_4 and Cl. In control experiments, phosphates were precipitated in absence of: a) Ce, b) Pb, or c) Cl.

In all experiments, phosphate precipitation results in the removal of almost all Ce from solution. PYM-Ce precipitation reduces Ce concentrations from 1700 ppm to 2,5 and 1,2 ppm at acidic and alkaline pH, respectively. In the absence of Cl, concentration of Ce also drops down to \sim 2 ppm.

In the entire pH range, PYM-Ce was precipitated (with a small admixture of another phosphate phase) in the form of needles, 10 – 1 μ m in size. Crystal size decreases with increasing pH. In the presence of Ce, PYM crystals are longer and thinner. In the absence of Pb, fibrous rhabdophane-Ce (RHA-Ce) is formed, aggregating in alkaline pH. In the absence of Cl, a new Pb-Ce phosphate phase, not quite identified at this stage of the study, is formed with a composition approximated by SEM/EDS, FTIR, and thermal analysis as Ce₂Pb₃(PO₄)₄·3,3H₂O. PXRD patterns indicate low degree of crystallinity. Nanometer crystallites form globular aggregates ~0,5 μ m in diameter.

Coprecipitation of Ce with Pb phosphates in the presence of Cl is advantageous because it results in the recovery of almost all Ce from solution in the form of a crystalline PYM-Ce that is easily separated from suspension. This works over a wide range of pH and concentrations.

This research was funded by NCN research grant no. 2021/43/O/ST10/01282.