TERNEB, the mother nebula of Terrestrial planets

MARC JAVOY¹, JAMES CONNELLY² AND PIERRE AGRINIER³

¹IPGP

²ETH Zurich

³Institut de Physique du Globe de Paris /CNRS UMR 7154 Presenting Author: mja@ipgp.fr

From the striking multielemental ($\Delta^{17}O$, $\epsilon^{48}Ca$, $\epsilon^{50}Ti$, $\epsilon^{54}Cr$, $\epsilon^{64}Ni$, $\epsilon^{92}Mo$, $\epsilon^{100}Ru$, $\mu^{142}Nd$, $d^{15}N$, dD) isotopic *identity* and the unique $d^{30}Si$ isotopic *discrepancy* between EH Chondrites and the Earth, we describe the formation and evolution of TERNEB, a high temperature gaseous medium of $d^{30}Si = -0.77 \pm 0.08\%$ located in the early inner solar system, less than 1My after the formation of the Sun from recent $e^{53}Cr$ data.

TERNEB formation results from classical solid-gas dynamics : TERNEB genesis results from the dehydroxylation of a centripetal solid CI material flux at ~400-500K, followed by its further devolatilisation to ~80% of the « dry » CI residue at 1550 \pm 50 K.

TERNEB gas major element composition (O, Mg, Si, Fe, Ni...) corresponds to a \ll RLE-free \gg EH composition. Its formation temperature is determined from d³⁰Si data to be 1550±50K.

TERNEB final condensation occurs by its reaction with a late 80% Ordinary Chondrite- 20% CI chondrite solid flux, whose RLE isotopic composition corresponds to the common EH-Earth composition. Between 1400 and 880 K this condensation to ~80% in mass produces the Earth and Venus material. Its occasional local 100% condensation produces very limited amounts of EH material, while the residual gas at TERNEB inner edge produced a Mercurian type material at ~1300K.

Terrestrial planets' accretion may then happen by any kind of classical mechanism.