Precise measurement of ²²⁶Ra/²³⁰Th disequilibria in deep-sea sediments by high-sensitivity ICP-MS

LIUTING YUAN¹, **CAI PINGHE**^{1,2}, XINGYU JIANG¹, WALTER GEIBERT³, YILIN CHENG¹ AND YAOJUN CHEN¹

 ¹College of Ocean and Earth Sciences, Xiamen University
²State Key Laboratory of Marine Environmental Science, Xiamen University
³Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Presenting Author: caiph@xmu.edu.cn

We describe a new method suitable for the precise and accurate determination of ²²⁶Ra in porewater and sediment samples using a single-collector sector field ICP-MS (ThermoFisher Element XR) equipped with an Apex-Q desolvation device and a high-sensitivity Jet-X interface. In combination with ²³⁰Th measurements in parallel sediment samples, this method allows precise and accurate quantification of the ²²⁶Ra/²³⁰Th disequilibria in surface sediment cores, thereby enabling the use of this isotope pair as a tracer of solute transfer across the sediment-water interface in the deep ocean. The method integrates a step of isotope dilution with ²²⁸Ra as an internal spike, a pre-concentration of Ra and Ba by MnO₂ precipitation, and an efficient separation of Ra from other undesirable elements using a cation exchange resin and a Triskem Sr-spec resin. With the inclusion of one or two additional cation resin columns and the use of up to 16 bedvolumes of a lower molarity (1.7 M) HCl eluent, our procedure eliminates the complicated matrix effects persistently encountered in previous studies, and provides a highly purified solution suitable for ²²⁶Ra measurement using an Element XR ICP-MS apparatus. Consequently, we are able to determine the activity of 226Ra in ~20-50 ml of porewater or 100 mg of sediment with an internal precision of ~1.0% and an accuracy of ~99.2%. The precise measurements of porewater and solid phase ²²⁶Ra in a sediment core from the North Pacific Ocean allowed the distribution coefficient (K_d) of ²²⁶Ra to be constrained tightly within a range of 4700-11600 ml g⁻¹. Moreover, with the aid of a one-dimensional exchange model, the combination of the ²²⁶Ra and ²³⁰Th measurements allowed us to estimate a ²²⁶Ra flux of 1140 ± 20 dpm m⁻² v⁻¹ from the sediment core.