Effect of the growth rate on Cu²⁺ incorporation into calcite and aragonite

JEAN-MICHEL BRAZIER¹, MARTIN DIETZEL² AND VASILEIOS MAVROMATIS³

¹Institute of Geological Sciences, University of Bern ²Institute of Applied Geosciences, Graz University of Technology ³University of Bern

Presenting Author: brazier.jeanmichel@gmail.com

The presence of trace cations in carbonate minerals that readily form on Earth's surface environments can provide insights on the composition and parameters of the precipitating solution (e.g. temperature, growth rate, precursor phases). These informations are essential for the reconstruction of the (paleo)environmental conditions occurring at the time of mineral formation, given that the mechanisms controlling the incorporation of an individual foreign ion in a mineral structure are known and quantified. In this study, the incorporation of Cu²⁺ in both calcite and aragonite was experimentally explored at a wide range of mineral growth rates (~ $10^{-9} < r_p < 10^{-7} \text{ mol/m}^2/\text{s})$ on synthetic seed crystals using the constant addition technique in mixed flow reactors at 25°C and 1 bar pCO₂. The obtained results show that during co-precipitation of Cu²⁺ with calcite, $D_{Cu, calcite}$ (i.e., distribution coefficient) values are > 1 and decrease with increasing growth rate. In contrast, D_{Cuaragonite} values are < 1 and increase with increasing growth rate. As both calcite and aragonite D_{Cu} exhibit a strong dependency on r_p and on the saturation state of the solution, it suggests that the Cu/Ca ratio of both phases is strongly controlled by these two parameters. While the incorporation of Cu²⁺ into calcite implies the formation of a dilute solid-solution between calcite and $CuCO_3$, it appears that the incorporation of Cu^{2+} into aragonite is related to the availability of defect sites at the growing mineral surface.