Subsurface/intermediate and deep-water oxygenation states in Mediterranean Sea during the Holocene sapropel deposition inferred from planktonic foraminiferal I/Ca and U/Ca ratios.

VINCENT GUARINOS1, KAZUYO TACHIKAWA1, LAURENCE VIDAL1, MARTA GARCIA1, NATHAN MINON1, CORINNE SONZOGNI1, MARIE REVEL2, HARTMUT SCHULZ3 AND FRANCISCO J. SIERRO4

1Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE
2University Cote d'AZUR
3University of Tubingen
4Univ. de Salamanca
Presenting Author: guarinos@cerege.fr

Mediterranean Sea is a climate change hotspot threatened by a possible reduction of thermohaline circulation. Its sensitivity is exemplified by rhythmic occurrences of organic-rich layers called sapropels in the eastern basin, indicative of reduced oxygenation state. The deep-water hypoxia has been studied using geochemical and micropaleontological approaches whereas the reconstruction of subsurface/intermediate oxygenation states has been hampered by scarce of appropriate proxy.

We applied planktonic foraminiferal I/Ca ratio as an indicator of minimum dissolved O2 concentration of the first 500m in the water column and U/Ca ratio of the same planktonic foraminifera as deep-water oxygenation proxy for the past 12,000 (12 ka) by focusing on Holocene sapropel S1 (10.5-6.1 ka BP). Four cores along a zonal transect were studied: MD04-2724 in the Levantine Sea and SL95 in the Gulf of Sirte, both are currently occupied by Eastern Mediterranean Deep Water. MD04-2797 at the Sicily strait is bathed essentially in Levantine Intermediate Water and ODP977 from the Alboran Sea is occupied by Western Mediterranean Deep Water.

As I/Ca is a fairly new proxy, we examined the influence of foraminifera cleaning, size fraction and species on I/Ca variability. The results confirmed negligible influence of these parameters. The I/Ca ratio varied between 0 and 7 µmol/mol for the study period with the highest ratio in the core-top, being consistent with well oxygenated present-day Mediterranean Sea. The most striking feature is a sharp decrease of foraminiferal I/Ca in the Levantine Sea and Gulf of Sirte at the beginning of S1, which is accompanied by enhanced foraminiferal U/Ca up to 120 nmol/mol. These results suggest O2-depletion in both intermediate and deep waters during S1 in the eastern basin. In contrast, only moderate U/Ca increase of around 50 nmol/mol is observed at the Sicily Strait and the ratio is stable and as low as 20 nmol/mol in Alboran Sea. We will compare our new results with planktonic foraminiferal d13C and d18O to study the relationship between oxygen consumption, hydrological