Origin of ¹⁸²W Anomalies in Ocean Island Basalts

GREGORY J ARCHER¹, GERRIT BUDDE^{2,3}, EMILY A WORSHAM^{3,4}, ANDREAS STRACKE⁵, MATTHEW G JACKSON⁶ AND THORSTEN KLEINE⁷

¹University of Münster

²DEEPS, Brown University
³University of Münster, Institut für Planetologie
⁴Lawrence Livermore National Laboratory
⁵Universität Münster
⁶University of California Santa Barbara
⁷Max Planck Institute for Solar System Research Presenting Author: archer@uni-muenster.de

Prior studies have reported deficits in ¹⁸²W for some modern ocean island basalts (OIB) that are negatively correlated with ³He/⁴He [e.g., 1,2,3]. Proposed explanations include accessing mantle domains formed within the first 60 Myr of Solar System history (¹⁸²Hf \rightarrow ¹⁸²W; t_{1/2} = 8.9 Ma) [1] and core-mantle interaction [1,2,3]. Surprisingly, prior datasets also have ¹⁸³W variations that are correlated with ¹⁸²W. This ¹⁸²W-¹⁸³W correlation could possibly be nucleosynthetic in nature, due to having a similar slope to nucleosynthetic *s*-process variations observed in meteorites. To investigate possible causes of correlated ¹⁸²W-¹⁸³W anomalies, we measured the W isotopic compositions of Samoan and Hawaiian OIB with previously reported ³He/⁴He. Some Hawaiian OIB were also measured for their mass-independent Mo isotopic compositions to assess the possible presence of nucleosynthetic effects.

The μ^{182} W values (ppm deviations of 182 W/ 184 W from standards) for Hawaiian and Samoan OIB measured in our study range from *ca.* 0 to -15, consistent with prior data. However, no 183 W variations or 182 W- 183 W correlation are observed in our data, indicating that the 182 W- 183 W correlation in prior datasets is analytical, rather than nucleosynthetic in nature. Similar analytical artifacts have been observed for TIMS measurements of other isotope systems [e.g., 4].

Viable explanations for ¹⁸²W variations in OIB include coremantle interaction, either through direct entrainment of core material or diffusion, or, alternatively, an overabundance of lateaccreted materials within OIB mantle sources.

Mass-independent Mo isotopic compositions of OIB overlap with the estimate for the BSE from [5], further supporting a lack of observable nucleosynthetic anomalies in OIB at the precision and accuracy currently attainable by modern analytical techniques.

[1] Mundl et al. (2017), Science 356, 66-69.

[2] Rizo et al. (2019), Geochem. Persp. Let. 11, 6-11.

[3] Mundl et al. (2019), Geochim. Cosmochim. Acta 271, 194-211.

[4] Andreason & Sharma (2009) Int. J. Mass Spec. 285, 49– 57.

[5] Budde et al. (2019) Nat. Astron. 3, 736–741.