Exploring riverine chemical fluxes and weathering processes in Sarawak, Malaysia Borneo

CHRIS TSZ LONG CHEUNG1, RYAN MCKENZIE1, BRIAN BEATY2, SHARVEEN RAVICHANDRAN3, ABDULMAJID ALI MUHAMMAD3, NOAH J. PLANAVSKY2 AND RAMASAMY NAGARAJAN3

1University of Hong Kong
2Yale University
3Curtin University Malaysia

Presenting Author: ctlc@connect.hku.hk

The weathering of silicate minerals on continents regulates atmospheric CO2 over multimillion-year timescales. An important means to study silicate weathering processes is via the study of river chemistry. Southeast Asia features some of the most favorable conditions for chemical weathering on Earth’s surface; however, river systems in this region remain poorly studied. Here, we present new elemental, Li isotopic (d7Li), and clay mineralogical data from 22 riverine localities across the state of Sarawak, Malaysia, Borneo. Our results show that, for samples east of the Lupar Line, a strong negative correlation between dissolved Li concentrations and isotopic (d7Li_diss) values is present (r2 = 0.66). Western samples in Sarawak show a very weak positive correlation (r2 = 0.13). Moreover, the dissolved load features high variability in isotopic compositions (d7Li_diss = +11.4 to +33.7 ‰) when compared to the lower spread in the suspended load (d7Li_susp = -4.2 to +3.2) across all sampling sites. There is also a moderate to low negative correlation between d7Li_susp and d7Li_diss (r2 = 0.41) where heavier dissolved values correspond with lighter suspended values. This indicates that the primary control on d7Li_diss values in Sarawak is the uptake of the lighter 6Li isotope during silicate weathering and secondary clay formation. The largest river in Sarawak, the Rajang River, features the heaviest d7Li_diss value at +33.7 ‰. This is markedly heavier than the currently known global riverine average of +23 ‰ [1] and notably closer to the global seawater value of +31 ‰ [2], thus highlighting the potential for Southeast Asian rivers to deliver heavy Li isotopes to the ocean.
