Gene-based modeling of methane oxidation in coastal sediments: constraints on the efficiency of the microbial methane filter

WYTZE K. LENSTRA¹, NIELS A.G.M. VAN HELMOND², PAULA DALCIN MARTINS^{1,3}, ANNA J WALLENIUS¹, MIKE JETTEN¹ AND CAROLINE P. SLOMP¹

¹Radboud University
²Utrecht University
³University of Groningen
Presenting Author: w.k.lenstra@uu.nl

Microbial-mediated methane (CH₄) oxidation strongly regulates the release of CH₄ from aquatic systems to the atmosphere. Coastal sediments are typically characterized by high rates of CH₄ production but generally release little CH₄ because of efficient sedimentary CH₄ oxidation. This CH₄ oxidation is predominantly coupled to oxygen and sulfate reduction. The quantitative role of other electron acceptors, such as iron and manganese oxides, is largely unknown.

Here, we present a reactive transport model (RTM) for sediment CH₄ dynamics that includes geochemical and microbial dynamics to assess the microbial constraints on the efficiency of sedimentary CH₄ oxidation under transient scenarios. We applied this RTM to a data set for a brackish coastal site with oxic bottom waters and sediment that is rich in CH₄ and metal oxides. With the RTM we show that upto 10% of the CH₄ produced in the sediment is oxidized by metal oxides while the remainder is removed through oxidation with oxygen and sulfate. We also show that in-situ cell specific rates and doubling times for CH₄oxidizing micro-organisms ultimately determine the efficiency of the microbial CH₄ filter. In the model, the slow growth rate of anaerobic CH₄ oxidizing microbes limits the ability of the microbial CH₄ filter to quickly adjust to transient changes at the sediment-water interface, thereby leading to periodic benthic release of CH₄. A sensitivity analysis shows that the capacity of sediments to oxidize CH₄ deteriorates upon environmental perturbations such as deoxygenation and eutrophication. As a consequence, oxidation of CH4 in the water column will become increasingly important for the mitigation of CH₄ release from aquatic systems to the atmosphere in the future.