Tracing the origin of melt-enhancing fluids in TTGs via *in-situ* oxygen isotopes

SILVIA VOLANTE¹, AMAURY POURTEAU², ZHENG-XIANG LI², WILLIAM COLLINS², DR. LUC SERGE DOUCET, PHD², HUGO OLIEROOK², LAURE A.J. MARTIN³ AND MATTHIJS SMIT⁴

 ¹Structural Geology and Tectonics Group, Geological Institute, Department of Earth Sciences, ETH Zurich
²Curtin University
³The University of Western Australia

⁴University of British Columbia

Presenting Author: svolante@ethz.ch

Newly-formed continental crust generated through partial melting of hydrated mafic rocks has compositionally changed from dominantly tonalite-trondhjemite-granodiorite (TTG) in the Archaean to calc-alkaline granite in the Phanerozoic. Fluidfluxed melting has been recently invoked as an important trigger for continental crust formation¹. However, the source of these fluids has remained difficult to ascertain². TTGs and their ~9 kbar amphibolitic source (i.e., 1650 m.y. basaltic protolith) are well-exposed in the Proterozoic Georgetown Inlier, NE Australia³. Fluid-fluxed melting of these amphibolites was invoked for high-Sr, low-HREE 1560 Ma TTG magma formation. In-situ oxygen isotope and geochronology analysis of zircon and garnet from garnet amphibolites, tonalites (veins), and associated metasomatic rocks are combined to investigate the origin of the melt-enhancing fluids. The 1555 Ma amphibolites yielded δ^{18} O values of 1.0–3.0 ‰, whereas cogenetic tonalite and c. 1543 Ma metasomatic rocks yielded values of 5-6 ‰, marking a distinct difference between the mafic source and their felsic product. Low- δ^{18} O in amphibolites indicates interaction of the 1650 Ma basaltic protolith with high-temperature fluids on the sea floor upon eruption. In contrast, the uniformly high $\delta^{18}O$ values for the tonalite and metasomatic rocks indicate meltenhancing fluids derived from a mantle-like source rather than from a sedimentary or hydrothermal source. Mantle-derived fluids circulating through the Georgetown Inlier lower crust between c. 1560-1540 Ma might have been released during the progressive opening of a mantle wedge above a retreating slab following the well-documented 1600 Ma collision of Laurentia and NE Australia³. The similarly mantle-like δ^{18} O signature of Archean TTGs thus could reflect the composition of meltenhancing fluids generated within subduction-zone environments.

- Collins, W. J., Murphy, J. B., Johnson, T. E. & Huang, H.-Q. Critical role of water in the formation of continental crust. *Nature Geoscience* 1–8 (2020).
- 2. Tamblyn, R. *et al.* Hydrated komatiites as a source of water for TTG formation in the Archean. *Earth and Planetary Science Letters* **603**, 117982 (2023).

3. Pourteau, A. *et al.* TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia. *Earth and Planetary Science Letters* **550**, 116548 (2020).