The role of S₃⁻ in molybdenum transport by hydrothermal fluids revealed by in situ X-ray absorption spectroscopy

DR. MARIA A. KOKH, PHD^{1,2}, STEPHAN KLEMME¹, CHRISTIAN SCHMIDT³, JEAN-LOUIS HAZEMANN⁴, DENIS TESTEMALE⁴, DR. CLÉMENT LASKAR^{5,6}, DR. MANUELA BORCHERT^{1,7}, ELENA F. BAZARKINA^{8,9,10}, CHRISTOPH MOELLER², GLEB POKROVSKI¹¹ AND MAX WILKE²

¹Institut für Mineralogie - WWU

²Universität Potsdam

³Deutsches GeoForschungsZentrum (GFZ)

⁴Institut Néel - CNRS - Univ Grenoble Alpes - FAME beamline - European Synchrotron Radiation Facility

⁵Laboratoire de Génie Chimique - CNRS - Univ Toulouse III - INP

⁶Géosciences Environnement Toulouse - CNRS - Univ Toulouse III - IRD - CNES - OMP

⁷Deutsches Elektronen-Synchrotron, Hamburg

⁸Institut Néel - CNRS

⁹The Rossendorf Beamline - European Synchrotron Radiation Facility

¹⁰Helmholtz–Zentrum Dresden–Rossendorf e. V., Institute of Resource Ecology

¹¹Géosciences Environnement Toulouse - CNRS - Université Toulouse III

Presenting Author: kokh@uni-potsdam.de

Knowledge of the chemical speciation of molybdenum under hydrothermal conditions is a key to understanding the formation of porphyry deposits, which are the primary economic source of molybdenum. Previous studies have revealed various Mo complexes including (hydrogen)molybdate ions (HMoO₄⁻, MoO_4^{2-}) and their ion pairs with alkalis (e.g., NaHMoO₄⁰), KHMoO₄⁰) in S and Cl-poor fluids, oxy-chloride species $({\rm MoO_mCl_n}^{(6\text{-}2m\text{-}n)\text{-}})$ in strongly acidic saline fluids, and thiomolybdate complexes (e.g., MoS₄²⁻, MoOS₂⁰) in reduced H₂Sbearing fluids and vapors [1-6]. However, these available data are unable to account for the massive transport of Mo in porphyry-related fluids revealed by fluid inclusion analyses demonstrating 100s ppm of Mo (e.g., [7]). A potential missing ligand for Mo may be the trisulfur radical ion, S_3 , which is predicted to be abundant in sulfate-sulfide H₂S/SO₄²⁻ rich acidicto-neutral porphyry-like fluids.

We performed *in situ* X-ray absorption spectroscopy (XAS) measurements at the Mo K-edge (20.0 keV) in a hydrothermal autoclave available at BM30 of ESRF synchrotron [8] to study the molybdenite solubility in model S_3^- rich aqueous solutions at 300 °C and 500 bar. We found that Mo can be efficiently transported by S_3^- -bearing fluids at concentrations of several ppm, whereas the available data on OH-Cl-S complexes predict

negligibly small Mo concentrations at our conditions (<0.01-0.1 ppm). Work is in progress to extend the experiments to a wider *T-P*-composition range of porphyry fluids and to quantitatively assess the role of S_3^- in Mo transport by geological fluids. Another goal of this research is to revise thermodynamic properties of other Mo aqueous complexes.

 Minubayeva & Seward (2010), GCA 74, 4365–4374. [2]
Borg et al. (2012), GCA 92, 292–307. [3] Kokh et al. (2016), GCA 187, 311–333. [4] Kokh et al. (2017), GCA 197, 433–466.
[5] Shang et al. (2020), Econ. Geol. 115, 661–669. [6] Liu et al. (2020), GCA 290, 162–179. [7] Kouzmanov & Pokrovski (2012), Soc. Econ. Geol. Spec. Pub. 16, 573–618. [8] Testemale et al. (2005), Rev. Sci. Instr. 76, 043905.

Funding: Deutsche Forschungsgemeinschaft WI 2000/25-1, KL 1368/13-1, SCHM 2415/6-1, ESRF ES-1050, DESY I-20220251, ANR-16-CE31-0017.