A tentative model for the origin of anorthosite-gabbronorite Sejny Massif, NE Poland – Geochemistry, U-Pb ages, Sr-Nd and Hf-O isotopic composition

ANNA GRABARCZYK-GURBA¹, EWA KRZEMIŃSKA², LEONID SHUMLYANSKYY³ AND DOMINIK GURBA²

Presenting Author: anna.grabarczyk@uw.edu.pl

The Mazury anorthosite-monzonite-charnockite-granite (AMCG) complex in northeasternmost Poland is a manifestation of Mesoproterozoic magmatism within the Fennoscandian block. The Mazury AMCG suite was emplaced into a stable continental crust, c. 300 M.y. after the last orogenic event, and comprises several rapakivi-type granite batholiths closely associated with three anorthosite-gabbronorite massifs (Suwałki, Sejny and Kętrzyn). This study concerns the Sejny massif (SM) hidden under 600 m of Phanerozoic sedimentary strata and drilled by the Sejny IG1 and IG2 boreholes.

The zircon U–Pb (SHRIMP) geochronology reveals that the anorthosites (1505 ± 6 Ma), gabbros (1503 ± 5 Ma, 1513 ± 4 Ma) and jotunites (1504 ± 7 Ma, 1514 ± 5 Ma) of the SM intruded the Paleoproterozoic (\sim 1.83 Ga) country rocks in several magmatic pulses at c. 1514 Ma and 1504 Ma. These ages closely match those obtained for the nearby Suwałki anorthosite massif and rapakivi granitoids [1]. Antiperthite megacryst with K-feldspar lamellae are common and together with rare and slightly older entrained zircon antecrysts (1527 ± 11 Ma), indicate a polybaric crystallization and differentiation [2].

The slightly subchondritic initial Nd (ϵ_{Nd} from -1.3 to -2.8) and Sr isotope composition (($^{87}\text{Sr}/^{86}\text{Sr})_i = 0.7041-0.7059$) of the Sejny mafic rocks differ from that of the depleted mantle and support the conclusion of melting of the lower crust with some input of juvenile mantle-derived material. The high Sr/Y (22–161) ratios of magmatic rocks reflect the crustal thickening due to former acreation and collision during the Svecofenian orogeny.

The Hf (zircon, LA-ICP-MS; $\epsilon_{\rm Hf}$ from -2.3 to -7.4) and O (zircon, SHRIMP; $\delta^{18}{\rm O}=7.9$ –9.5%) isotopic composition results from magma differentiation and/or progressive crustal contamination. The presence of zircon xenocrysts (1830 Ma) in the gabbro sample ($\epsilon_{\rm Hf}$ of -7.4) emphasizes the importance of crustal assimilation during magma ascent.

- [1] Wiszniewska & Krzemińska (2021), *Precambrian Research* 361, 106265.
- [2] Teng & Santosh (2015), *Precambrian Research* 256, 79-101.

¹University of Warsaw

²Polish Geological Institute – National Research Institute

³Curtin University