A tentative model for the origin of anorthosite-gabbronorite Sejny Massif, NE Poland – Geochemistry, U–Pb ages, Sr–Nd and Hf–O isotopic composition

ANNA GRABARCZYK-GURBA1, EWA KRZEMIŃSKA2, LEONID SHUMLYANSKYY3 AND DOMINIK GURBA2

1University of Warsaw
2Polish Geological Institute – National Research Institute
3Curtin University

Presenting Author: anna.grabarczyk@uw.edu.pl

The Mazury anorthosite–monzonite–charnockite–granite (AMCG) complex in northeasternmost Poland is a manifestation of Mesoproterozoic magmatism within the Fennoscandian block. The Mazury AMCG suite was emplaced into a stable continental crust, c. 300 M.y. after the last orogenic event, and comprises several rapakivi-type granite batholiths closely associated with three anorthosite-gabbronorite massifs (Suwałki, Sejny and Kętrzyn). This study concerns the Sejny massif (SM) hidden under 600 m of Phanerozoic sedimentary strata and drilled by the Sejny IG1 and IG2 boreholes.

The zircon U–Pb (SHRIMP) geochronology reveals that the anorthosites (1505 ± 6 Ma), gabbros (1503 ± 5 Ma, 1513 ± 4 Ma) and jotunites (1504 ± 7 Ma, 1514 ± 5 Ma) of the SM intruded the Paleoproterozoic (~1.83 Ga) country rocks in several magmatic pulses at c. 1514 Ma and 1504 Ma. These ages closely match those obtained for the nearby Suwałki anorthosite massif and rapakivi granitoids [1]. Antiperthite megacryst with K-feldspar lamellae are common and together with rare and slightly older entrained zircon antecrysts (1527 ± 11 Ma), indicate a polybaric crystallization and differentiation [2].

The slightly subchondritic initial Nd (εNd from −1.3 to −2.8) and Sr isotope composition (t(87Sr/86Sr) = 0.7041–0.7059) of the Sejny mafic rocks differ from that of the depleted mantle and support the conclusion of melting of the lower crust with some input of juvenile mantle-derived material. The high Sr/Y (22–161) ratios of magmatic rocks reflect the crustal thickening due to former acretion and collision during the Svecofenian orogeny.

The Hf (zircon, LA-ICP-MS; εHf from −2.3 to −7.4) and O (zircon, SHRIMP; δ18O = 7.9–9.5‰) isotopic composition results from magma differentiation and/or progressive crustal contamination. The presence of zircon xenocrysts (1830 Ma) in the gabbro sample (εHf of −7.4) emphasizes the importance of crustal assimilation during magma ascent.