Fe and O atom exchange on hematite and goethite surfaces after aqueous Fe(II) sorption: A NanoSIMS investigation

PHILIP LARESE-CASANOVA¹, PU YUE¹ AND CHRISTOPHER GORSKI²

¹Northeastern University

²Pennsylvania State University

Presenting Author: p.laresecasanova@northeastern.edu

Fe(III) oxides are well known to sorb aqueous Fe(II) atoms which initiates exchange of aqueous and oxide Fe atoms as well as exchange of oxide O and H₂O-O. Here, the Fe and O atom exchange process was investigated for hematite and goethite using isotope tracer experiments and NanoSIMS measurements that allowed for simultaneous Fe and O isotopic quantification at the mineral surfaces and at depth. Hematite and goethite of natural Fe and O isotope abundances were exposed to anoxic solutions of 99.3% ⁵⁴Fe(II) and 0.2% ¹⁸O-H₂O for 30 d. Partial sorption of aqueous ⁵⁴Fe(II) and ¹⁸O and release of oxide ^{NA}Fe and NAO was observed. Fe and O atom exchange extents showed variation with oxide particle sizes. Reactions of synthesized nanosized hematite and nanosized goethite to the ⁵⁴Fe(II) solutions produced surfaces enriched in ⁵⁴Fe/⁵⁶Fe compared to the bulk Fe(III) oxide, but less than aqueous ⁵⁴Fe/⁵⁶Fe. Surfaces were also enriched in ¹⁸O/¹⁶O compared to bulk values, but O atom exchange occurred to less extent than Fe exchange. A synthesized micron-sized hexagonal hematite became enriched in ⁵⁴Fe/⁵⁶Fe at the basal surface, but to less extent than that of nanosized hematite. No 18O/16O enrichment, though, was observed at this basal surface. The results at both particle sizes show that surface Fe reorganization does not directly reflect the aqueous Fe isotopic composition. A ⁵⁴Fe/⁵⁶Fe depth profile on a centimeter-sized natural hematite specimen (Figure 1) revealed the sorbed ⁵⁴Fe can migrate deeper into the oxide structure well beyond a few layers of Fe. The ⁵⁴Fe/⁵⁶Fe values appear to follow Fickian diffusion, but only if different diffusivities are assumed for the near-surface environment and bulk oxide. ¹⁸O-H₂O was exchanged only at the near-surface for this specimen. The results support the notion that exchanged Fe and O atoms are distributed rather inhomogeneously at hematite and goethite surfaces and that deeper migration of adsorbed Fe atoms is likely.

<u>Figure 1</u>: Single spot nanoSIMS depth profiles for Fe (a) and O (b) for reacted and unreacted ^{NA}hematite specimens.