In situ Rb-Sr dating and REE patterns of Ediacaran glauconites and detrital feldspars from the Centralian Superbasin and the Flinders Ranges, Australia

CECILIA VANINA LOYOLA¹, JURAJ FARKAS², CHARLES VERDEL³, SARAH GILBERT⁴, LANCE HOLMES⁵, STEFAN LÖHR⁶, GLENN BROCK⁶, GRAHAM A. SHIELDS⁷, CHRISTINE EDGOOSE³, DR. AHMAD REDAA, PHD^{8,9}, MORGAN L. BLADES⁸, ALAN S. COLLINS¹⁰, CALEB BISHOP¹¹, SARAH GILES¹², NICHOLAS CHRISTIE-BLICK¹² AND PETER HAINES¹³

Presenting Author: cecilia.loyola@adelaide.edu.au

In situ Rb-Sr dating of silicate minerals and sedimentary rocks uses a laser ablation (LA)-inductively coupled plasma tandem mass spectrometry with a collision/reaction cell (LA-ICP-MS/MS)[1]to measure the 87Rb and 87Sr isotope abundances. This novel dating method is based on well-established radioactive decay of 87Rb to 87Sr via a negative beta pathway (the emission of an electron), with a half-life of 49.61 ± 0.16 Ga[2].

Here we present results from samples deposited in the Centralian Superbasin, corresponding to glauconite bearing Ediacaran to Cambrian marine sedimentary rocks: Arumbera Sandstone (Amadeus Basin), Dey Dey (Officer Basin). We also analysed the Ediacaran Wonoka Formation (Flinders Ranges from South Australia). Prior to in-situ Rb-Sr dating, the samples were mapped using high-resolution SEM/EDS imaging and mineral mapping3. The analysis of the glauconite from the Arumbera Sandstone returned an age of 441.4 ± 12.6 Ma. For the Dey Dey mudstone, the age of glauconite is 472.32 ± 7.57 Ma, and for glauconite from Wonoka Formation, the age is 491 ± 11.4 Ma. Although the ages are younger than expected stratigraphic ages (i.e., the latter ranging from ca. 580 to 520 Ma)

they coincide with possible overprinting related to the Rodingan movement (~440 to 430 Ma)[3] and the Delamerian Orogeny (~500 to 480 Ma)[3].

In situ Rb-Sr dating and Rare Earth Elements (REE) analysis (via LA-ICP MS/MS) was undertaken also in detrital orthoclase grains from the Arumbera Sst. sample. Based upon Eu anomalies, the orthoclase grains with a positive Eu-anomaly are detrital and older (1158±76 Ma), than orthoclase with negative Eu-anomalies which are much younger (556±65 Ma) and thus of likely authigenic origin and age.

Our study shows the potential of the in situ Rb-Sr technique for dating detrital and authigenic K- and Rb-rich mineral components (i.e., glauconite and orthoclase) in marine sedimentary rocks, and for constraining their post-depositional diagenetic overprinting or alteration histories.

- [1]Redaa, Farkas, Gilbert, Collins, Lohr, Vasegh, Forster, Blades, Zack, Guiliani (2022), Geostandards and Geoanalytical Research 47, 23-48...
- [2] Villa, De Bieve, Holden & Renne (2015), Geochimica et Cosmochimica Acta 164, 382-385.
- [3] Ahmad & Munson (2013), Northern Territory Geological Survey, Special Publication 5

¹University of Adelaide, Earth Sciences, Metal Isotope Group (MIG), Australia

²University of Adelaide

³Northern Territory Geological Survey (NTGS), Alice Springs, Australia

⁴Adelaide Microscopy

⁵SANTOS Ltd., Adelaide, Australia

⁶Macquarie University

⁷University College London

⁸University of Adelaide, Earth Sciences

⁹King Abdulaziz University

¹⁰Metal Isotope Group (MIG), Earth Sciences, University of Adelaide

¹¹The Australian National University

¹²Columbia University, Department of Earth & Environmental Sciences, USA

¹³Geological Survey of Western Australia