Probing magma-mush reactions in primitive arc/backarc lavas using stable Fe isotopes

OLIVER NEBEL1, DR. ANTOINE BÉNARD, PHD2, PAOLO A. SOSSI3, PHILIPP BRANDL4, TARUN WHAN5 AND RICHARD ARCULUS6

1Monash University
2University of Lausanne
3ETH Zürich
4GEOMAR Helmholtz Centre for Ocean Research Kiel
5The Australian National University
6Australian National University

Presenting Author: oliver.nebel@monash.edu

Mantle-derived melts in subduction zones are predominantly basaltic in composition, yet erupting arc and backarc lavas display a compositional diversity from basaltic to rhyolitic. The key factor driving this diversity is magmatic differentiation en route to the surface. The understanding of this process has evolved from a simple fractional crystallisation model to complex magma-mush interactions involving dynamic fractionation. In this process, incongruent melting reactions in mush reservoirs act as a filter for ascending melts, which evolve towards elevated Si content by melt-mineral reactions and associated magma mixing between fresh melt and magma-in-residence [1].

Here we present stable Fe isotope data for a suite of rocks from the Pual Ridge in the Manus arc/backarc basin, Papua New Guinea, to test whether primitive lavas also interact with mush or bypass the mush reservoir. The Pual Ridge rocks define SiO₂-MgO trends that resemble a liquid line of descent until MgO ~1 wt.%, despite sampling individual magmatic centers. A similar trend is observed for a range of trace elements, including chalcophile elements previously used to define the so-called magnetite crisis [2].

The Fe isotope compositions of the Pual Ridge rocks show a ‘zig-zag’ trend with decreasing MgO, similar to other arc lavas [3,4], towards heavier isotopic compositions until magnetite saturation at ca. 4 wt.% MgO, and then first lighter Fe isotopes followed by a reversal towards very heavy signatures in samples <1 wt.% MgO. Crucially, Kilauea Iki lavas, often treated as examples for perfect fractional crystallisation, do not show the magnetite reversal [5]. We interpret the zig-zag trend as melt-mush interaction and conclude that primitive arc/backarc lavas have passed through mush reservoirs. Accordingly, mineral-melt mush reactions in arc/backarc systems are a common process during their genesis. Magma mixing, however, based on Fe isotopes, does not occur in lavas >1 wt. MgO and appears to be absent in primitive arc lavas.