Developments of ³⁹Ar Dating by Atom Trap Trace Analysis

GUO-MIN YANG^{1,2}, YAN-QING CHU¹, XI-ZE DONG¹, SHUI-MING HU^{1,2}, WEI-KANG HU¹, WEI JIANG^{1,2}, ZHENG-TIAN LU^{1,2}, FLORIAN RITTERBUSCH¹ AND ZHAO-FENG WAN¹

¹University of Science and Technology of China ²Hefei National Laboratory, University of Science and Technology of China Presenting Author: yanggm@ustc.edu.cn

With a half-live of 269 years, ³⁹Ar covers the dating range from 50 years to 1800 years. Due to its gaseous and inert properties, ³⁹Ar is an ideal tracer for dating water and ice. However, its analysis is very difficult because of its extremely low isotopic abundance in the environment $(10^{-17}-10^{-15})$. Atom Trap Trace Analysis (ATTA) is a promising tool that can make ³⁹Ar dating widely used with a smaller sample size, higher precision and higher sample throughput. In this talk, we will present the latest developments of ³⁹Ar analysis using ATTA¹, including increased ³⁹Ar detection efficiency and a reduced ³⁹Ar background, resulting in a two-fold increasement in the upper age limit of ³⁹Ar dating. The sample size is about 10 kg of groundwater. The analysis uncertainty is about 10% for modern samples. Moreover, with a ³⁹Ar pre-enrichment system^{2,3} based on mass spectrometric techniques, the ³⁹Ar count rate is up to 1000 atoms/h, two orders of magnitude higher than in previous efforts. This allows for a considerably higher sample throughput.

1. Amin L. Tong, Ji-Qiang Gu, Guo-Min Yang, Shui-Ming Hu, Wei Jiang, Zheng-Tian Lu, and Florian Ritterbusch. An atom trap system for ³⁹Ar dating with improved precision. Review of Scientific Instruments, 92, 063204 (2021)

2.Z. H. Jia, Amin. L. Tong, L. T. Sun, Y. G. Liu, J. L. Liu, Q. Wu, X. Fang, W. S. Yang, Y. H. Guo, F. Ritterbusch, Z.-T. Lu, W. Jiang, G. M. Yang, and Q. W. Chen. An electromagnetic separation system for the enrichment of ³⁹Ar. Review of Scientific Instruments, 91, 033309 (2020)

3.Amin L. Tong, Ji-Qiang Gu, Ze-Hua Jia, Guo-Min Yang, Shui-Ming Hu, Wei Jiang, Zheng-Tian Lu, Florian Ritterbusch, and Liang-Ting Sun. Review of Scientific Instruments, 93, 023203 (2022)