
Goldschmidt 2023 Abstract
https://doi.org/10.7185/gold2023.16190

Building ecosystems of research
software: lessons learned from

geochronology
PROF. PIETER VERMEESCH

University College London
Presenting Author: p.vermeesch@ucl.ac.uk

Openness and transparency are the key ingredients of
reproducible science. Unfortunately, in the Earth Sciences,
transparency is impeded by the prevalence of proprietary and
closed research software. For example, in isotope geochemistry,
mass spectrometer data is generally processed with commercial
point-and-click software that does not preserve a paper trail of
the underlying calculations. Fortunately, a growing community
of computing-minded earth scientists addresses this issue, using
collaborative software development platforms such as GitHub.
The author’s contributions in this community include IsoplotR,
Provenance, Radial/DensityPlotter and Simplex. These tools
were designed to:

1. Adhere to the "Unix philosophy", which posits that
software should be simple, compact, clear, modular, and
extensible. Instead of building one large program that
aims to do everything, it is better to write several small
programs that work together.

2. Avoid unnecessary dependencies. In scientific
programming languages such as Python or R, it is
common for packages to call other packages, which
depend on yet another set of packages and so on. When
some of these dependencies violate the Unix philosophy,
it is possible that a small package depends on a large
one. Thus it is not uncommon for packages to install
gigabytes of code to do something inherently simple.
This is known as “dependency hell”. Dependency hell
produces fragile software that is not future proof. To
avoid this situation, it is sometimes advisable to reinvent
the wheel and re-implement a function from scratch
instead of loading a package.

3. Develop an Application Programming Interface (API).
Even though most users of geoscience software may
prefer to use a Graphical User Interface (GUI), it is
important to also cater to “power users” who prefer to
use the command line. The latter group may only
account for 5% of the users, but they push the field
forward, so it is important to be friendly to them.

4. Work with open and human-readable data exchange
formats such as JSON or XML. This way, it is possible
to build a software 'ecosystem', in which lots of
developers can work together whilst using different
programming languages.

https://doi.org/10.7185/gold2023.16190
mailto:p.vermeesch@ucl.ac.uk

	Local€Disk
	Abstract: Building ecosystems of research software: lessons learned from geochronology (Goldschmidt 2023 Conference)


