Real time on-site gas analysis - a ballad of (noble) gases, Arsenic and seismicity

ROLF KIPFER1,2, ALEXANDRA KATHRYN LIGHTFOOT1, SÉBASTIEN GIROUD1 AND CAPUCINE MARION1

1Eawag, Swiss Federal Institute of Aquatic Science and Technology
2ETH Zurich

Presenting Author: rolf.kipfer@eawag.ch

Water and other terrestrial fluids crucially impact processes in the deep surface and in the environment, including some that have significant social implications: fracking, nuclear waste disposal, geological CO\textsubscript{2} sequestration, natural gas and heat production.

However, our current understanding of (geological) fluid dynamics is rather limited as traditional techniques for gas analysis are time-consuming and involve the laborious analysis of very few samples in high-specialized laboratories. To conclude, available experimental methods fall short in tracking fluid dynamics in real time and under field conditions.

To address these technical limitations that impede real-time gas analysis in environmental and geological systems in the last few years analytical methods were developed to quantify (noble) gas concentrations in terrestrial fluids under real-world conditions [1]. Our second-generation self-contained and portable mass spectrometer [2] can be operated in the field permitting the quasi-continuous quantification of He, Ne, Ar, Kr, N\textsubscript{2}, O\textsubscript{2}, CH\textsubscript{4}, CO\textsubscript{2} and H\textsubscript{2} at high temporal resolution (seconds (gases) - minutes (liquids)). Recent tailored technical adjustments empower the instrument to be operated even under harsh conditions such as high temperatures and high water vapor pressures [3] and enable for targeted sampling of rare species for later laboratory analysis.

Our contribution discusses results of on-site gas measurements identifying gas production to modulate geogenic Arsenic mobilization [4] and allowing the possible relation between fluid emanation and seismicity to be critically assessed [3].