Nanoscale mechanism of uranium reduction by magnetite

BARBORA BARTOVA¹, ZEZHEN PAN², THOMAS LAGRANGE¹, QINGYIN XIA^{1,3}, NICOLAS GAUQUELIN⁴, AMIR H TAVABI⁵, JOHAN VERBEECK⁴, RAFAL E DUNIN-BORKOWSKI⁵ AND **RIZLAN BERNIER-LATMANI**¹

¹Ecole Polytechnique Fédérale de Lausanne (EPFL)
²Fudan University
³China University of Geosciences (Beijing)
⁴University of Antwerp

⁵Forschungszentrum Jülich

Presenting Author: rizlan.bernier-latmani@epfl.ch

Uranium (U) is a ubiquitous element in the Earth's crust and its biogeochemical behavior is largely constrained by its redox transformation from soluble uranium hexavalent species (U(VI)) to sparingly soluble tetravalent species (U(IV)). U(VI) reduction by mineral phases has been shown to produce crystalline U in the form of U(IV)O₂, but also to form persistent pentavalent U (U(V)). Magnetite (Fe₃O₄) is an Fe(II)-bearing iron oxide and experimental studies have shown that the co-precipitation of U(VI) and magnetite resulted in the formation of a stable U(V) coordination in the iron oxide mineral phases [1].

A study [2] reported the formation of single U oxide nanocrystals (1-5 nm) followed by the formation of nanowires that extended away the magnetite surface (Figure 1). Over time, the nanowires collapsed into ordered UO₂nanoclusters. U(IV) was suggested as the dominant valence state in the nanowires. However, due to the sensitivity of U(V) under the beam, reduction of U(V) species may occur, and the presence of mixed valence states may be overlooked. Besides the beam sensitivity issue, robustly discriminating between UO₂ and UO_{2+x} (0<x<1), representing mixed valence uranium oxides such as U₃O₈, is challenging.

Here, we present O K-edge and U N-edge electron energy loss spectroscopy spectra from individual uranium oxide nanoparticles within the nanowires in order to characterize the valence state of individual nanocrystals by comparing their fine structure to references mixed oxides measured in the same conditions.

The mechanism that emerges at the scale of individual nanoparticles (1-5 nm) is the initial reduction of U(VI) to U(V) at the magnetite surface, producing mixed valence oxides UO_{2+x} that self-assemble into nanowires. These nanowires are stable as long as no further reduction occurs but reduction to UO_2 results in the collapse of nanowires into nanoclusters.

The reduction of U(VI) by magnetite represents an example of heterogeneous reductive precipitation that, due to the properties of uranium, can be resolved at the near atomic scale and reveal the complexity of electron transfer from mineral to metal.

[1] Pidchenko et al. *Environ. Sci. Technol.*, **51**, 2217–2225 (2017).

[2] Pan et al., Nat. Commun., 11, 4001 (2020)

Fig. 1: Magnetite particle (blue arrow) with UO_{2+x} nanoparticles self-assembled into nanowires (red arrow).