Dominance of Benthic fluxes in the Oceanic Beryllium Budget and Implications for Paleo-denudation Records

KAI DENG¹, JÖRG RICKLI¹, TIM JESPER SUHRHOFF¹, JIANGHUI DU², FLORIAN SCHOLZ³, SILKE SEVERMANN⁴, SHOUYE YANG⁵, JAMES MCMANUS⁶ AND DEREK VANCE⁷

¹ETH Zürich

²Institute of Geochemistry and Petrology, ETH Zurich

³GEOMAR Helmholtz Centre for Ocean Research Kiel

⁴Rutgers University

⁵Tongji University

⁶Bigelow Laboratory for Ocean Sciences

⁷ETH Zurich

Presenting Author: kai.deng@erdw.ethz.ch

In recent years, sedimentary records of oceanic beryllium isotopes (¹⁰Be/⁹Be) have been used as a tracer for continental erosion and weathering (1-4). Compared to other weathering tracers, which may be sensitive to weathering style and/or source, the major potential advantage of ¹⁰Be/⁹Be lies in its direct link with the continental input flux of ⁹Be. But these promising applications of ¹⁰Be/9Be ratios are currently hampered by an incomplete understanding of the oceanic ⁹Be budget, particularly the efficiency of ⁹Be transmission through the continent-ocean interface. Recent modelling of estuarine removal of riverine dissolved ⁹Be has brought this uncertainty into the spotlight (5, 6). However, riverine input alone is insufficient to close the oceanic ⁹Be budget (7, 6). One potential missing source could be the early-diagenetic release of particulate-bound reactive 9Be deposited on continental margins (2, 7). This benthic flux generated at the sediment-water interface is significant for the marine budget of some other particle-reactive metals.

A quantification of such benthic sedimentary fluxes is key to understanding the sensitivity of oceanic ¹⁰Be/⁹Be to changing continental erosion and weathering, but direct constraints are extremely scarce. Here we present sediment pore-water Be profiles from diverse environments on continental margins, to quantify the diagenetic release of particulate-bound ⁹Be to the oceans. Our results suggest that pore-water Be cycling is mainly controlled by particulate supply and Mn-Fe cycling, leading to higher benthic fluxes on shelves. Benthic fluxes may help close the ⁹Be budget and are at least comparable to, or higher than, the riverine dissolved input. These observations demand a new model framework through which marine Be isotope records can be robustly interpreted, one that considers the potentially dominant benthic source.

References

1. J. K. Willenbring, F. von Blanckenburg. Nature (2010).

- 2. F. von Blanckenburg, J. Bouchez. EPSL (2014).
- 3. F. von Blanckenburg et al.. Nat. Geosci. (2015).
- 4. J. K. Caves Rugenstein, D. E. Ibarra, F. von Blanckenburg. Nature (2019).
- 5. S. Li, S. L. Goldstein, M. E. Raymo. PNAS (2021).
- 6. F. von Blanckenburg et al.. PNAS (2022).
- 7. T. J. Suhrhoff et al. GCA (2019).